Notes on DFS model

Yang Pei*

April 23, 2025

1 Model without tariff

1.1 Environment

- Two countries: Home (H) and Foreign (F)
- A continuum of homogeneous goods $z \in [0, 1]$
- Labor is the only factor of production
- Country $i \in \{H, F\}$ is populated by L_i workers
- Each worker is paid a wage, w_i
- Perfect competition + constant returns to scale

1.2 Demand

The representative consumer in country $n \in \{H, F\}$ has a Cobb-Douglass utility

$$U_n(\mathbf{q}) = \int_0^1 b(z) \ln q(z) \, dz$$

- z indexes the good.
- b(z) is the share of expenditure on good z
- By assumption: $\int_0^1 b(z) dz = 1$

Utility maximization implies

$$\begin{cases} p_H(z)q_H(z) = b(z)E_H\\ p_F(z)q_F(z) = b(z)E_F \end{cases}$$

• $p_i(z)q_i(z)$: expenditure on good z in country i.

• $Y_i = w_i L_i$: total income in country *i*; $E_i = w_i L_i + D_i$: total expenditure

^{*}Yang Pei, University of Houston, ypei5@uh.edu

1.3 Supply

- Let $a_i(z)$ denote the unit labor requirement for producing good z in country i.
- Order the goods so that $A(z) \equiv \frac{a_F(z)}{a_H(z)}$ is decreasing and strictly monotone.
 - -H has a comparative advantage in the low-z goods.
 - -F has a comparative advantage in the high-z goods.
- Suppose trade is costless: $p_H(z) = p_F(z) = p(z)$.
- Good z will be produced by H if

$$a_H(z)w_H < a_F(z)w_F \iff A(z) > \frac{w_H}{w_F}$$

• Good z will be produced by F if

$$a_H(z)w_H > a_F(z)w_F \iff A(z) < \frac{w_H}{w_F}$$

1.4 Equiliburium

Equilibrium Outcomes:

- relative wage $\omega = \frac{w_H}{w_F}$
- cut-off \tilde{z} , such that
 - H produces every good $z \in [0, \tilde{z}];$
 - F produces every good $z \in [\tilde{z}, 1]$

Equilibrium Condition (1), from production rule:

$$A(\tilde{z}) = \omega$$

- Denote by $\theta(\tilde{z}) \equiv \int_0^{\tilde{z}} b(z) dz$ the fraction of income spent on goods produced in *H*.
- Equilibrium Condition (2), from balanced trade:

$$\underbrace{\theta(\tilde{z})(w_F L_F + D_F)}_{\text{Home exports}} = \underbrace{[1 - \theta(\tilde{z})](w_H L_H + D_H)}_{\text{Home imports}} + D_H$$
$$\underbrace{[1 - \theta(\tilde{z})](w_H L_H + D_H)}_{\text{F exports}} = \underbrace{\theta(\tilde{z})(w_F L_F + D_F)}_{\text{F imports}} + D_F$$

[Balanced Trade]

$$\underbrace{\theta(\tilde{z})w_F L_F}_{\text{Home exports}} = \underbrace{[1 - \theta(\tilde{z})]w_H L_H}_{\text{Home imports}}$$

$$\omega = \frac{\theta(\tilde{z})}{1 - \theta(\tilde{z})} \left(\frac{L_F}{L_H}\right) \equiv B(\tilde{z})$$

- Note that $B(\cdot)$ is strictly increasing function, i.e., $B'(\cdot) > 0$
- Equilibrium conditions (1) and (2) jointly determine (\tilde{z}, ω)

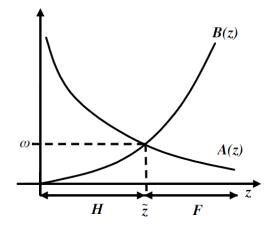


Figure 1:

1.5 Gains from trade

- Assign Home labor as the numeraire: $w_H = 1$
- After opening to trade
 - $Y_H = w_H L_H = L_H$ remains the same
 - $p_H(z)$ remains the same if z is not imported
 - $-p_H(z)$ decreases if z is imported
- So, Home gains from trade!

1.6 Trade costs

- Until now, we assumed costless trade $\implies p_H(z) = p_F(z)$
- Suppose trade is subject to an ice berg trade cost, τ :
 - Home will export good z if $\tau w_H a_H(z) \leq w_F a_F(z)$ (τ : 1 unit good from H to F, have to ship $\tau > 1$ units)
 - Foreign will export good z if $w_H a_H(z) \ge \tau w_F a_F(z)$ (τ : 1 unit good from F to H, have to ship $\tau > 1$ units)
- Define \underline{z} such that: $\tau w_H a_H(\underline{z}) = w_F a_F(\underline{z})$
- Define \bar{z} such that: $w_H a_H(\bar{z}) = \tau w_F a_F(\bar{z})$
 - Home will produce and export $z \in [0, \underline{z}]$
 - Foreign will produce and export $z \in [\bar{z}, 1]$
 - Goods $z \in [\underline{z}, \overline{z}]$ are non-traded.

$$\underbrace{\frac{\theta(\underline{z})(w_F L_F + D_F)}{\text{Home exports}}}_{\text{F exports}} = \underbrace{\frac{\theta(\overline{z})(w_H L_H + D_H)}{\text{Home imports}}}_{\text{Home imports}} + D_H$$

[Balanced Trade]

•

$$\omega = \frac{\theta(\underline{z})}{\theta(\overline{z})} \left(\frac{L_F}{L_H}\right) \equiv B(\tilde{z})$$

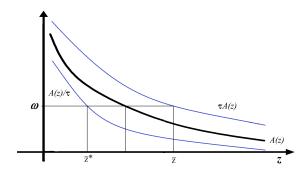


Figure 2:

2 Equilibrium

Table 1:	Equilibrium Conditions under Free Trade
A1	$\begin{split} \omega &\equiv \frac{w_H}{w_F}; \ A(z) \equiv \frac{a_F(z)}{a_H(z)} \\ \omega &= A(\tilde{z}); \ \theta(\tilde{z}) \equiv \int_0^{\tilde{z}} b(z) dz \end{split}$
A2	$\omega = A(ilde{z}); heta(ilde{z}) \equiv \int_0^{ ilde{z}} b(z) dz$
A3	$\omega = B(\tilde{z}) \equiv \frac{\theta(\tilde{z})}{1 - \theta(\tilde{z})} \left(\frac{L_F}{L_H}\right);$
Exp & Income	$E_i = w_i L_i + D_i; \ \mathbf{Y}_i = w_i L_i; \ D_i \equiv 0 \forall i \in [H, F]$
Production Rule	$A(ilde{z}) = \omega = rac{w_H}{w_F}$
Trade Balance	$\underbrace{\theta(\tilde{z})w_F L_F}_{\theta(\tilde{z})} = \underbrace{\left[1 - \theta(\tilde{z})\right]w_H L_H}_{\theta(\tilde{z})}$
	Home exports Home imports

Home export trade cost	$ au_{FH} > 1$		
Foreign export trade cost	$ au_{HF} > 1$		
A1	$\omega \equiv \frac{w_H}{w_F}; A(z) \equiv \frac{a_F(z)}{a_H(z)}$		
A2	$\omega = \frac{A(\underline{z})}{\tau_{FH}}; \omega = \tau_{HF} A(\overline{z}); \theta(\underline{z}) \equiv \int_0^{\underline{z}} b(z) dz; \theta(\overline{z}) \equiv \int_{\overline{z}}^1 b(z) dz$		
A3	$\omega = B(\underline{z}, \overline{z}) \equiv \frac{\theta(\underline{z})}{\theta(\overline{z})} \left(\frac{L_F}{L_H}\right);$		
Exp & Income	$E_i = w_i L_i + D_i; Y_i = w_i L_i; D_i \equiv 0$	$\forall i \in [H,F]$	
Production Rule	$\frac{A(z)}{\tau_{FH}} = \omega; \ \tau_{HF}A(\bar{z}) = \omega$		
Trade Balance	$\theta(\underline{z})(w_F L_F + D_F) = \theta(\overline{z})(w_H L_H + D_H) + D_H$		
	Home exports Home imports		

Table 2: Equilibrium Conditions under Iceberg Trade Cost

3 Model with Trade cost

Table 3:	Equilibrium	Conditions	under	Iceberg	Trade	Cost	and	Tariff	

Home export trade cost and ad valorem tariff	$\tau_{FH} > 1; 1 + t_{fh}; \kappa_{FH} \equiv \tau_{FH} (1 + t_{fh})$
Foreign export trade cost and ad valorem tariff	$\tau_{HF} > 1 ; 1 + t_{hf}; \kappa_{HF} \equiv \tau_{HF}(1 + t_{hf})$
(HF means home by from foreign)	
A1	$\omega \equiv \frac{w_H}{w_F}; \ A(z) \equiv \frac{a_F(z)}{a_H(z)}$
A2	$\omega = \frac{A(z)}{\kappa_{FH}}; \ \omega = \kappa_{HF} A(\bar{z}); \ \theta(\underline{z}) \equiv \int_0^{\bar{z}} b(z) dz; \ \theta(\bar{z}) \equiv \int_{\bar{z}}^1 b(z) dz$
A3	$\frac{\theta(z)}{\theta(\bar{z})} = \frac{w_H L_H + T_H}{w_F L_F + T_F};$
A4	$T_H = \frac{t_{hf}}{1+t_{hf}} \int_{\bar{z}}^1 \dot{b}(z) w_F a_F(z) \kappa_{HF} dz; \ T_F = \frac{t_{fh}}{1+t_{fh}} \int_0^{\bar{z}} b(z) w_H a_H(z) \kappa_{FH} dz$
Exp & Income	$E_i = w_i L_i + D_i + T_i; Y_i = w_i L_i; D_i \equiv 0$
Tariff	$T_{H} = \frac{t_{hf}}{1 + t_{hf}} \int_{\bar{z}}^{1} b(z) w_{F} a_{F}(z) \kappa_{HF} dz; T_{F} = \frac{t_{fh}}{1 + t_{fh}} \int_{0}^{\bar{z}} b(z) w_{H} a_{H}(z) \kappa_{FH} dz$
Production Rule	$\frac{A(z)}{\kappa_{FH}} = \omega; \ \kappa_{HF}A(\bar{z}) = \omega$
Trade Balance	$\theta(\underline{z})(w_F L_F + D_F + T_F) = \theta(\overline{z})(w_H L_H + D_H + T_H)) + D_H$
	Home exports Home imports

- Given Home and Foreign technology described by a(z) and $a^*(z)$, populations L, L^* , and preferences described by b(z), an **equilibrium** consists of a threshold \tilde{z} and wages w, w^* such that:
 - 1. Consumers maximize their utility: b(z) is the share of expenditures on good z.
 - 2. Each country produces the range of goods for which it is the lowest-cost supplier:
 - Home produces goods in the range of $[0, \tilde{z}]$
 - For eign produces goods in the range of $[\tilde{z},1]$
 - 3. Labor market clears in each country.
- The equilibrium is the intersection of A and B.
- The intersection is where the three conditions in our definition of equilibrium are all satisfied:
 - Conditions 1 and 3 are embedded in B.
 - Condition 2 is represented by A.

• The equilibrium objects are the threshold \tilde{z} and the relative wage ω such that both of these values are simultaneously consistent with the consumption side (B) and with the production side (A).

Market clearing condition

- Labor market clearing condition:
 - The income (i.e. total wages) of Home equals what the world spends on goods produced at Home:

$$wL = v(\tilde{z})(wL + w^*L^*)$$

- Equivalent to the labor market clearing is the condition that trade is balanced.
 - Imports to Home equals Exports from Home:

$$(1 - v(\tilde{z}))wL = v(\tilde{z})w^*L^*$$

• If labor market clears in one country, it will also clear in the other country.

Tying the demand and supply

- Notice that:
 - 1. B represents the relation between relative wage and market clearing.
 - 2. Market clearing represents the relation between relative wage and expenditures.
- Hence, *B* represents the relation between relative wage and expenditures (consumer's expenditures).
- On the other hand, A represents the relation between relative wage and labor productivities (production technology).
- It is now the time to tie these parts together.