Essays on Trade and China's Economy Yang Pei University of Houston July 7, 2025 # My dissertation 1. Demographics, Trade, and Growth 2. The Decline in China's Trade Share of GDP: A Structural Accounting Demographics, Trade, and Growth # Research Question #### Motivation - Nowadays, about one-third of global GDP is generated in countries with declining and aging populations - Chief among them is China - ▶ As its population declines and ages, economic growth has also slowed down - At the same time, the labor-intensive goods, that China used to specialize in, are now relocating their production - ▶ from China to other developing countries **Research Question**: How much does demographic structure influence China's economic growth and trade patterns? - Centering around two mechanisms - ▶ Age-dependent idea generation process that affects **productivity** - ▶ Age-dependent saving behavior that affects **capital accumulation** ## What I do - Conduct empirical analysis using Panel regression and Panel VARX model, I find - ▶ A strong positive association between countries' working age share, and - ★ Productivity growth; Investment or Saving share of GDP - ▶ (Not today) An inverse U-shaped response from a 1-percentage point young cohort share shock on - ★ Productivity growth; the growth rate of capital stock per person - Develop and Calibrate a OLG trade model features - ▶ Demographic-induced productivity change - ▶ Demographic-induced capital accumulation - ► Trade based on Ricardian and Heckscher-Ohlin comparative advantages (CA) - By comparing baseline final steady state with two cases in which China's fertility and survival aligned to RoW: - ▶ Higher fertility boosts productivity, wage, and consumption, as more workers generate more ideas - ▶ Lower survival lowers productivity and wage but raises consumption by reducing desired savings ▶ Literature # Panel Regression Effect of Demographic structure on TFP growth, and capital accumulation $$Y_{it,t+4} = Constant + \alpha_1 Demographic_{it} + \alpha_2 Controls_{it} + f_i + f_t + \varepsilon_{it}$$ (1) - Data sample: 74 countries. 10 non-overlapping 5 years from 1970 to 2019 - Dependent variables, $Y_{it,t+4}$: - ▶ Average yearly TFP growth rate; Average yearly Investment, or consumption share of GDP (during the period t to t+4) - $Demographic_t$: Working age share [15-64/total] - $Controls_{it}$: log real GDP per capita at t for country i; number of total population at t for country i - f_i and f_t : country and year fixed effects # Panel regression Main results | | Average value in the future 4 years | | | | | | |------------------------|-------------------------------------|---------|--|--|--|--| | VARIABLES | TFP growth rate Cap.Formation(% GI | | | | | | | Work.Share (15-64)/ToT | 11.43*** | 28.80** | | | | | | | (3.33) | (2.17) | | | | | | Control | YES | YES | | | | | | Observations | 732 | 724 | | | | | | R-squared | 0.259 | 0.575 | | | | | $1~\rm p.p.$ (or $1~\rm s.d.$) increase, in the working age share, is related to a $0.11~\rm p.p.$ (or $0.81~\rm s.d.$) increase, in the average TFP growth rate over the following 4-year period. $1~\rm p.p.$ (or $1~\rm s.d.$) increase, in the working age share, is related to a $0.29~\rm p.p.$ (or $0.33~\rm s.d.$) increase, in the average capital formation share of GDP over the next four years. ### Robustness checks: Detail - Different age cohorts across total population: 3 cohorts: [0, 14], [15,64], [64,+); 4 cohorts: 0,24], [25,49], [50,74], [75, +); 5 cohorts: [0, 19], [20,39], [40,59], [60,79], [80,+) - Other variable: new patent applications (per 1000 people); new industrial design applications (per 1000 people) ## Model and intuition The demographic process is governed by three exogenous variables: • Initial population across ages, age- and time-varying fertility rates, and survival rates ``` → Demographic process ``` Producers produce tradable intermediate sectoral varieties given current productivity distribution • The mean of the productivity distribution: **knowledge stock** ``` → Production ``` Heterogeneous households varying in age - Differ in their ability to generate new ideas, which affects knowledge stock dynamics ⇒ More people or more working age people → more new ideas generated →larger increase in knowledge - \Rightarrow More people or more working age people \rightarrow more new ideas generated \rightarrow larger increase in knowledge stock" - \bullet Face a consumption-investment trade-off under perfect for esight - \Rightarrow Differing in saving behavior Comparative advantage regulates the allocation of production across locations and sectors • Driven by differences in productivity, capital—labor ratios, and iceberg trade costs → Trade ## How model works ## Calibration Regions: CHN; Asian 5 (JPN, TWN, KOR, AUS, IND); USA and CAN; EUR; ROW $\textbf{Sectors:} \ \, \text{Agr.} \ \, ; \, \{\text{Labor-, Capital-intensive}\} \, \otimes \, \{\text{Manu., Ser.}\}$ Working age; Lifespan: 16 to 65; 85 Other time invariant parameters: From literature or impute from real data Time varying shocks: Match real data **Time periods**: 1970 to 2100 • Initial steady state: 1970; Final steady state: 2100 #### Data source: - 1971–2020: UN, PWT, WIOD Long IO Table - 2021–2100: UN, Imputed # Quantitative analysis Compare final steady state $\mathbf{Goal:}$ Assess long-run effects of China's demographic processes by comparing stationary equilibrium in 2100 **Strategy:** Compare baseline final steady state with two counterfactual scenarios: - Fertility = RoW: Replace China's fertility with RoW trajectory (higher fertility rates) - Survival = RoW: Replace China's survival with RoW trajectory (lower survival rates) # Quantitative analysis Compare final steady state Table: Stationary balance growth equilibrium, China | Final Stationary balance growth equilibrium at 2100, China | | | | | | | | | |--|-----------------|-------------|-------------|--|--|--|--|--| | | (1) | (2) | (3) | | | | | | | | Baseline | Fert. = RoW | Surv. = RoW | | | | | | | i. Demographic variables | | | | | | | | | | Average fertility rate, 0/[21-49] | 0.02 | 0.03 | 0.02 | | | | | | | Survival rate, age 65 | 0.94 | 0.94 | 0.85 | | | | | | | Working age pop. (billion.) | 0.30 | 2.35 | 0.25 | | | | | | | Implied pop. growth after 2100 | 1.0% | 1.1% | 1.0% | | | | | | | ii. Productivity in 2100 | | | | | | | | | | Average productivity | normalized as 1 | 1.65 | 0.95 | | | | | | | Implied average productivity growth | 0.3% | 0.4% | 0.3% | | | | | | | iii. Other Outcomes in 2100 | | | | | | | | | | Real wage rate | normalized as 1 | 1.38 | 0.94 | | | | | | | Consumption rate $= (1 - investment rate)$ | 49% | 56 % | 52 % | | | | | | | Consumption per person | normalized as 1 | 1.49 | 1.08 | | | | | | ## Conclusions Comparing the final balanced growth equilibrium reveals that both higher fertility and lower survival lead to increased consumption per person - Higher fertility increases wage and consumption: - lacktriangle More workers generate more ideas \rightarrow higher productivity - ▶ A higher balanced-growth productivity rate reduces saving incentives - Lower survival reduces wage but raises consumption - ightharpoonup Fewer workers ightarrow lower productivity - Lower survival rate lowers desired savings Overall, productivity is primarily determined by fertility, while capital per person is largely influenced by the survival rate, as it affects desired savings # The Decline in China's Trade Share of GDP: A Structural Accounting ## Motivation $Source:\ WDI\ Database$ Over the past 30 years, China's economy has grown enormously • 1990-2019, Real GDP growth rate: 9.2% per year A key feature of its growth is participation in the global economy • 1990-2019, China's Real Trade growth rate: 10.6% per year ## Motivation # Despite China's increasing importance in global trade, its trade share of GDP has been declining since 2006 - At the sector level (During 2002 to 2007 and 2007 to 2015) - ▶ Heavy industry trade accounts for about 89% of trade share change #### In parallel, China's internal economic integration also grows dramatically - From 2002 to 2015, China's inner trade share of GDP almost doubled - From 2000 to 2015, internal migrants almost doubled - ▶ Household registration system reform: labor moves to Coastal areas #### Research Question: - What forces have driven China's declining trade share? - ▶ What is the relative importance of each? ## What I do - Develop a multi-sector, multi-region Ricardian trade model (Caliendo and Parro, 2015): - ▶ International trade. - ▶ Inter-regional trade within China. - Labor mobility frictions across regions within China. (Tombe and Zhu, 2018) - Calibrate (sector-region) exogenous shocks through gravity regression: - ► Total factor productivity (TFP) shocks - ▶ Asymmetric Trade cost shocks: Intranational trade and International trade - ▶ Labor mobility cost shocks • Feed each shock separately into model to assess importance of each force ▶ Literature ## Model #### Overview - Multi-region, multi-sector model with Eaton-Kortum Ricardian trade - ▶ N_0 China regions plus $N_1 = N N_0$ other regions #### Production - Sectoral intermediate goods are produced using labor and sectoral composite intermediate goods - Under fréchet type productivity distribution - Sectoral intermediate goods are used for both consumption and as production inputs #### Utility - Aggregate consumption is a Cobb-Douglas aggregator of sectoral composite goods from each sector. - Households derive utility from spending their income on aggregate consumption. #### Labor Flow - Labor moves across regions within China based on: - Destination wage rates - ▶ Fréchet-type migration costs capturing utility loss from leaving one's registered area #### Trade • Trade, determined by Ricardian comparative advantage affects sectoral reallocations ## Calibration
Parameters and Shocks ## Table: Calibration • Detail | | Model Structure Overview | | | | | | | | | | | |-------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|--|--| | Regions | # of regions | 11 total: 8 China regions; 3 foreign | | | | | | | | | | | | | Asian3: Korea, Taiwan, Japan; G6: G7 w/o Japan; ROW | | | | | | | | | | | Periods | # of periods | 2: 2002–2007; 2007–2015 | | | | | | | | | | | Sectors | # of sectors | 4: Agriculture, Light Industry, Heavy Industry, Services | | | | | | | | | | | | Time Invariant Parameters | | | | | | | | | | | | $\theta = 4$ | Trade elasticity | Simonovska and Waugh (2014) | | | | | | | | | | | $\kappa = 1.5$ | Labor flow elasticity | Tombe and Zhu (2020) | | | | | | | | | | | $\sigma = 2$ | Intermediate varieties elasticity | Broda and Weinstein (2006) | | | | | | | | | | | α_n^j | Expenditure share | Calculated from IO table | | | | | | | | | | | $\gamma_n^j, \gamma_n^{j,k}$ | Production share | averaged across years | | | | | | | | | | | | Tin | ne Varying Shocks | | | | | | | | | | | λ_n^j | TFP | Match real data | | | | | | | | | | | κ_{ni}^{j} | Trade cost | Match real data | | | | | | | | | | | $ u_n^j$ | Labor flow cost | Match real data | | | | | | | | | | | \bar{L}^m, M_{nm} | Labor supply and labor flow | Obtained from PWT and census | | | | | | | | | | ## Counterfactual Results: Single shocks Table: Decompose Marginal effects | Marginal effects of different shocks | | | | | | | | | | |--------------------------------------|--|----------|----------|----------|--|--|--|--|--| | | Trade Share of GDP (p.p. change) 2002-2007 2007-2015 | External | Internal | External | Internal | | | | | | | All Forces (Baseline) | 7.78 | 21.83 | -10.28 | 5.16 | | | | | | | TFP | -12.55 | 2.04 | -10.75 | -0.12 | | | | | | | Demographic | | | | | | | | | | | Migration firction | 1.99 | 1.01 | -1.84 | 0.14 | | | | | | | Population growth | -0.36 | 0.08 | -0.47 | -0.07 | | | | | | | $Trade\ cost$ | | | | | | | | | | | Intranational | -2.31 | 21.36 | -0.24 | -0.41 | | | | | | | International | 9.86 | -1.65 | -4.47 | -1.42 | | | | | | | Other forces | 6.08 | -1.42 | 0.37 | 2.25 | | | | | | Baseline: all shocks realized as actual Counterfactual: hold specific shock at the base year level while all other shocks realized as actual $\mathbf{Marginal\ effects\ of\ specific\ shock} \equiv \mathbf{Trade\ share\ under\ } \mathbf{Baseline} \text{ - Trade\ share\ under\ } \mathbf{Counterfactual}$ ## Counterfactual Results: Single shocks at disaggregated level Table: Decompose Marginal effects at disaggregated level | Decompose Marginal effects at the sector level | | | | | | | | | | |--|----------------------------------|----------|----------|----------|--|--|--|--|--| | | Trade Share of GDP (p.p. change) | | | | | | | | | | | 2002- | 2007 | 2007- | 2015 | | | | | | | | External | Internal | External | Internal | | | | | | | All Forces | 7.78 | 21.83 | -10.28 | 5.16 | | | | | | | Other forces | 6.08 | -1.42 | 0.37 | 2.25 | | | | | | | Foregin TFP | 5.80 | -1.47 | 0.67 | 2.11 | | | | | | | Foregin trade cost | -0.41 | 0.17 | -0.68 | 0.25 | | | | | | | Foregin labor | 0.76 | -0.14 | 0.56 | -0.07 | | | | | | | TFP | -12.55 | 2.04 | -10.75 | -0.12 | | | | | | | Agriculture | -0.37 | 0.05 | -4.70 | -0.78 | | | | | | | Light industry | -1.50 | 0.47 | -0.90 | 0.03 | | | | | | | Heavy industry | -8.42 | 5.41 | -8.63 | 5.24 | | | | | | | Service | -8.70 | -4.12 | -13.96 | -4.31 | | | | | | | International Trade cost | 9.86 | -1.65 | -4.47 | -1.42 | | | | | | | Agriculture | -0.24 | 0.00 | -1.83 | -0.26 | | | | | | | Light industry | 0.63 | -0.14 | -0.39 | 0.08 | | | | | | | Heavy industry | 6.74 | -0.23 | -0.92 | 1.00 | | | | | | | Service | 0.56 | -0.78 | -4.85 | -1.84 | | | | | | ## Conclusions #### Build trade model to explain China's trade share change over time • Key driving forces are China's TFP change and China's export trade cost change #### Story for China's trade share of GDP Change - Overall - ▶ From 2002 to 2007, China's trade share of GDP increase due to - ★ International trade cost decline, foreign regions TFP growth - ▶ From 2007 to 2015, China's trade share of GDP decline due to - ★ China's TFP growth - At sector level - ► In both periods, changes in TFP within the heavy industry sector play a crucial role → Detail - ★ Through input-output linkages, changes in TFP within the services sector hold the same level of importance # Thank You APPENDIX 1: Demographics, Trade, and Growth ## Related Literature #### Demographic structure and productivity - Empirical: Feyrer (2007); Maestas, Mullen, and Powell (2023); Jones (2010); Azoulay, Graff Zivin, and Wang (2010); - Replicate these results at the macro level using a larger set of countries and more recent years; further estimate the dynamic effects of demographic shocks - Models: Becker, Murphy, and Tamura (1990); Lindh and Malmberg (1999); Aksoy, Basso, Smith, and Grasl (2019); Buera and Oberffeld (2020) - Model the relationship between demographics and productivity by assuming age-varying ability in generating new ideas #### Multi-country trade models with capital accumulation - Sposi (2022); Eaton, Kortum, Neiman, and Romalis (2016); Alvarez (2017); Ravikumar, Santacreu, and Sposi (2019); Anderson, Larch, and Yotov (2020); and Sposi, Yi, and Zhang (2021a) - Link capital accumulation to age-varying demographics and analyze its interaction with trade-induced relocation and economic growth ### Changes in China's trade patterns and economic growth - Liu and Ma (2018); Tombe and Zhu (2019); Fan (2019); Hao, Sun, Tombe, and Zhu (2020); Ma and Tang (2020), Alessandria, Khan, Khederlarian, Ruhl, and Steinberg (2021); Hanwei, Jiandong, and Yue (2024); Brandt, and Lim (2024) - Quantify trade pattern changes and economic growth from a demographic perspective # **Empirical** Data source ### The United Nations Statistics Division (UNSD) Age cohorts share for every 5 years, Dependence ratio, Old dependence ratio, Young dependence ratio, Total population ### Penn World Table (PWT 10.01) - Average annual hours worked by persons engaged, Number of persons engaged, Mean years of schooling, Capital stock, Real GDP, Average depreciation rate of the capital stock - TFP calculated by PWT based on above variables #### CEPII • Imports and Exports between two countries ### World Development Indicators (WDI) • Share of household consumption, capital formation, government consumption (% share of GDP), residents new patents application, residents new industrial design application ◆ Back 6 # Panel Regression Effects of demographic structure and trade cost change on capital/labor ratio $$GR.K/L_{it,t+4} = Constant + \beta_1 Demographic_{it} + \beta_2 TradeCost_{it} + \beta_3 Control_{it} + f_i + f_t + \varepsilon_{it}$$ (2) • $GR.K/L_{it,t+4}$: Average capital per person (k) growth rate (%) for country i during the period t to t+4: $$GR.K/L_{it,t+4} = \left[\frac{k_{i,s+4}}{k_{i,s}}\right]^{\frac{1}{4}} - 1$$ • $TradeCost_{it}$: The trade cost for country i at time t, which is constructed as the Head-Ries (HR) index (Head and Mayer, 2004): $$TradeCost_{it} = (\frac{\pi_{i,row}}{\pi_{row,row}} \frac{\pi_{row,i}}{\pi_{ii}})^{-\frac{1}{2\theta}}$$ 4日 → 4日 → 4 로 → 4 로 → 9 Q C July 7, 2025 #### Under different cohort structure | | | | | Average val | ue in the fu | ture 4 years | | | | |---|--------------------|--------------------|-----------------------------|--|-----------------|-------------------------------|---|--------------------|-----------------------------| | VARIABLES | TFP growth rate | | | Patent.Applications
(per 1000 people) | | | Industrial.Design.Applications
(per 1000 people) | | | | Different age intervals: | 3 cohorts | 4 cohorts | 5 cohorts | 3 cohorts | 4 cohorts | 5 cohorts | 3 cohorts | 4 cohorts | 5 cohorts | | 3 cohorts: | 21.48*** | 26.22*** | 25.36*** | -1.60*** | -1.56*** | -1.11*** | -0.89*** | -0.55*** | -0.53*** | | $[0,14],[15,\!64],[64,\!+)$ | (3.61)
35.46*** | (4.24)
34.48*** | (4.08)
31.80*** | (-4.60)
0.58*** | (-7.06)
0.18 | (-4.09)
-1.72*** | (-3.84)
0.63*** | (-3.87)
0.71*** | (-2.87)
0.08 | | 4 cohorts: | (5.19) | (4.28) | (4.35) | (2.73) | (0.46) | (-4.06) | (4.98) | (2.87) | (0.31) | | [0,24], [25,49], [50,74], | 38.25*** | 43.60*** | 34.74*** | 2.29** | 4.90*** | 3.59*** | -0.42 | 1.08*** | 1.75*** | | [75, +) | (3.42) | (4.41) 13.47 | (3.46)
55.17*** | (2.50) | (7.40) -2.59 | (6.47)
4.23*** | (-0.98) | (2.93)
-1.85** | (5.20)
-0.31 | | 5 cohorts:
[0, 19], [20,39], [40,59],
[60,79], [80,+) | | (0.90) | (5.35)
-21.89
(-1.08) | | (-1.59) | (3.99)
-7.67***
(-2.62) | | (-1.99) | (-0.46)
-1.09
(-0.57) | | Initial.Log | -3.46*** | -3.51*** | -3.51*** | | | | | | | | .Dependent
PoP.Growth | (-4.77) | (-4.49) | (-4.55) | | | | | | | | Observations | 732 | 732 | 732 | 395 | 395 | 395 | 215 | 215 | 215 | | R-squared | 0.266 | 0.263 | 0.272 | 0.859 | 0.880 | 0.886 | 0.935 | 0.939 | 0.942 | | Time FE | YES | Country FE | YES ◀ Back 6 #### Under different cohort structure | | | | | Average valu | e in the futu | ire 4 years | | | | |------------------------------------|----------------------|------------|------------|--------------------------|---------------|-------------|-----------------|-----------|-----------| | VARIABLES Different age intervals: | Cap.Formation(% GDP) | | | Gross.Consumption(% GDP) | | | K/L growth rate | | | | | 3 cohorts | 4 cohorts | 5 cohorts | 3 cohorts | 4 cohorts | 5 cohorts | 3 cohorts | 4 cohorts | 5 cohorts | | 3 cohorts: | 9.34 |
16.69*** | 15.40** | 98.55*** | 92.44*** | 92.98*** | 21.77*** | 24.08*** | 22.11*** | | [0, 14], [15,64], [64,+) | (0.98) | (2.64) | (2.32) | (9.21) | (14.84) | (12.62) | (3.69) | (4.50) | (4.02) | | | 34.10*** | 29.11*** | 26.71** | 64.81*** | 60.55*** | 71.18*** | 32.98*** | 39.21*** | 36.72*** | | 4 cohorts: | (6.74) | (4.14) | (2.52) | (9.15) | (5.58) | (5.39) | (5.32) | (5.36) | (5.30) | | [0,24], [25,49], [50,74], | -31.87 | 37.83** | 20.39 | 98.58*** | 59.95*** | 43.58* | 8.34 | 19.18 | 27.00*** | | [75, +) | (-1.30) | (2.05) | (1.13) | (2.95) | (3.23) | (1.85) | (0.61) | (1.66) | (2.98) | | | | -124.60*** | 53.93** | | 150.74*** | 100.97** | | 4.22 | 21.25 | | 5 cohorts: | | (-2.77) | (2.37) | | (3.21) | (2.47) | | (0.24) | (1.41) | | [0, 19], [20,39], [40,59], | | | -224.74*** | | | 126.47* | | | -9.87 | | [60,79], [80,+) | | | (-3.07) | | | (1.75) | | | (-0.33) | | Trade Cost | | | | | | | -0.83** | -0.83** | -0.79** | | | | | | | | | (-2.13) | (-2.11) | (-2.00) | | Initial.Log | | | | | | | -1.99*** | -1.98*** | -1.93*** | | .Dependent | | | | | | | (-3.45) | (-3.21) | (-3.14) | | PoP.Growth | | | | | | | -33.14* | -35.31** | -30.58 | | | | | | | | | (-1.84) | (-2.08) | (-1.64) | | Observations | 724 | 724 | 724 | 725 | 725 | 725 | 758 | 758 | 758 | | R-squared | 0.971 | 0.972 | 0.972 | 0.996 | 0.996 | 0.996 | 0.785 | 0.787 | 0.787 | | Time FE | YES | Country FE | YES Back 6 Regression Coefficients follows hump shape Figure: 3 cohorts: [0, 14], [15,64], [64,+) Regression Coefficients follows hump shape Figure: 3 cohorts: [0, 14], [15,64], [64,+) Coefficients of different cohort Figure: 4 cohorts Coefficients of different cohort Figure: 5 cohorts Coefficients of different cohort Figure: 4 cohorts #### Coefficients of different cohort Figure: 5 cohorts July 7, 2025 ## Panel VARX model Capital accumulation, TFP, and economic growth VARX model: $$Y_{n,t} = C + AY_{n,t-1} + BX_{n,t-1} + \varepsilon_{n,t}$$ Endogenous variables: $$Y_{nt} = \begin{bmatrix} the \ 5 \ year \ growth \ rate \ of \ capital \ per \ person \ (\%) \\ the \ 5 \ year \ growth \ rate \ of \ TFP \ (\%) \\ the \ 5 \ year \ growth \ rate \ of \ the \ real \ GDP \ per \ capita \ (\%) \end{bmatrix}_{Country \ n, time \ t}$$ Exogenous variables: $$X_{nt} = \begin{bmatrix} young \ people \ share \ (\%), \ (0-14) \\ old \ people \ share \ (\%), \ (65+) \\ trade \ cost \ change \ (\%) \\ the \ 5 \ year \ growth \ rate \ of \ population(\%) \end{bmatrix}_{Country \ n, time \ t}$$ Time interval: 1 unit of time = 5 years. e.g. t = 1 means first 5 years $\stackrel{\bullet}{\bullet}$ Back 4 ## Panel VARX model main results IRF of 1 p.p. young people share shock on I.TFP growth; II. Growth rate of real capital stock per person III. Growth rate of real income stock per person The IRF of +1 p.p. young people (0-15) share shock is hump shape • Shock will pass down as people grow up ✓ Back 4 ## Panel VARX model # Empirical findings - Panel regression: higher working age share is related to higher - ▶ Productivity growth - ★ New patent applications (per 1000 people) - ▶ Investment share of GDP - Panel VARX model: the hump shape for IRF of 1 p.p. young people share shock on - ▶ Productivity growth - ► Growth rate of capital stock per person # Demographic structure $N_{g,t}$: the number of households of age g alive at time t $f_{g,t}$: the fertility rate of age g households at time t $s_{g,t}$: the probability of surviving to age g at time t, given that they were alive at g-1 The implied unconditional probability of surviving g periods up to time t is given by: $$S_{g,t} = \prod_{k=1}^{g} s_{k,t+k-g}$$ The demographic process can be describe as: $$N_{1,t+1} = s_{1,t} \sum_{g=1}^{G} f_{g,t} N_{g,t}, s_{1,t} \equiv 1$$ $$N_{g+1,t+1} = s_{g+1,t+1} N_{g,t}.$$ ◆ Back 7 # Demographic structure $$\begin{bmatrix} N_{1,t+1} \\ \vdots \\ N_{g,t+1} \\ \vdots \\ N_{G,t+1} \end{bmatrix} = \begin{bmatrix} f_{1,t} & \cdots & f_{g,t} & \cdots & f_{G,t} \\ s_{2,t+1} & 0 & 0 & \cdots & 0 \\ 0 & s_{g+1,t+1} & 0 & \cdots & 0 \\ 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & s_{G-1,t+1} & \cdots & 0 \\ 0 & 0 & 0 & s_{G,t+1} & 0 \end{bmatrix} \cdot \begin{bmatrix} N_{1,t} \\ \vdots \\ N_{g,t} \\ \vdots \\ N_{G,t} \end{bmatrix}.$$ or $$N_{t+1} = \Omega_t N_t$$ At steady state $$(1+g_n)N_t = \Omega_t N_t$$ ### Production #### Overview • A continuum of intermediate good $\omega \in [0,1]$ from country n sector $j, y_{n,t}^j(\omega)$: are produced by labor, capital, and sectoral composite intermediate good $$y_{n,t}^{j}\left(\omega\right) \equiv q_{n,t}^{j}\left(\omega\right) \left[N_{n,t}^{j}\left(\omega\right)^{\beta_{n}^{j}} K_{n,t}^{j}\left(\omega\right)^{1-\beta_{n}^{j}}\right]^{\gamma_{n}^{j}} \prod_{k=1}^{J} m_{n,t}^{k,j}\left(\omega\right)^{\gamma_{n}^{k,j}} \tag{3}$$ - Intermediate goods are aggregated to build sectoral composite good - Sectoral composite good is used for consumption, Investment, and intermediate goods production - \bullet The productivity of each variety $\omega,\,q_{n,t}^{j}\left(\omega\right),$ is a r.v., drawn from Fréchet distribution - ▶ The CDF of the distribution, $F_{n,t}^j(q) = exp(-\lambda_{n,t}^j q^{-\theta})$: Knowledge frontier - ▶ The mean of the distribution, $\lambda_{n,t}$: Knowledge stock ◆ Back 7 ### Production Knowledge stock dynamics (1/3) (Omit the subscripts for sector j and country n for simplicity) ### Between time t and t+1, ullet The representative producer is characterized by its productivity level q, which is drawn from the current knowledge frontier - Households generate some number of new ideas and share with producers - ▶ Both the number of new ideas and its productivity q_{new} are stochastic (Buera and Oberfield, Econometrica, 2019) • Producers adopt the new idea if $q_{new} > q$ ✓ Back 7 Production: Knowledge stock dynamics (2/3) Ideas arrive following a Poisson Process with mean parameter α_t $$\alpha_t \equiv \left(\sum_g \eta_g N_{g,t}\right)^{\varphi} \tag{4}$$ - η_g : mean of ideas arrived per age g people per period - $N_{g,t}$: number of age g people at time t - α_t : mean of ideas arrived per unit of time - $\varphi < 1$: reflect some crowding effects, or duplication of idea ### The productivity of a new idea q_{new} is a r.v., where $q_{new} = zqt^{\rho}$ - z is the original component; draw from distribution H(z) (Buera and Oberfield, Econometrica, 2019) - \bullet q' is an insight drawn from current knowledge frontier - \bullet ρ captures the contribution of the quality of insights from the current knowledge frontier to the productivity of new ideas Production: Knowledge stock dynamics (3/3) • One can derive the law of motion for stock of knowledge (λ_t) : $$\lambda_{t+1} - \lambda_t = \Gamma (1 - \rho) \alpha_t (\lambda_t)^{\rho}; \quad \alpha_t \equiv \left(\sum_g \eta_g N_{g,t}\right)^{\varphi}$$ (5) - An increase in the level of working-age population leads to higher knowledge stock - age-varing ability in generating ideas - On the balanced growth path, higher population growth implies higher knowledge stock growth - more people generate more ideas, higher population growth rate implies higher idea growth - w/o demographic: Chad Jones, 2022 - w/o demographic & insight drawn from external dist.: Oberfield and Buera, 2019 ■ Back 7 ## Households #### Overview (Omit country subscripts for simplicity) - Three exogenous variables governing the demographic process - ▶ The initial number of population across ages: N_{g,t_0} - ▶ $f_{g,t}$: number of the newborn from per age g cohort at time t - ▶ $s_{g,t}$: the probability of surviving to age g at time t, given that they were alive at g-1 - Households work at age 16, retired at age 65 and die at age G = 85 - The age g households that was born in period t choose lifetime consumption $\{c_{g,t+g-1}\}_{g=1}^G$ and savings $\{a_{g+1,t+g}\}_{g=1}^{G-1}$ to maximize expected lifetime utility $$\sum_{g=1}^{G} \beta^{g-1} \psi_{t+g-1} S_{g,t+g-1} u(c_{g,t+g-1}), \text{ with } S_{g,t} \equiv \prod_{k=1}^{g} s_{k,t+k-g}$$ - $u(c) = (c^{1-1/\sigma})/(1-1/\sigma)$ - $ightharpoonup \psi_t$: saving wedges, capture other forces (except demographics) impacting saving behavior ■ Back 7 ## Households Budget constraint ✓ Back 7 The budget constraint for households at age $g \in [1, G]$, time t is $$P_{C,t}c_{g,t} + P_{I,t}a_{g+1,t+1} = P_{I,t}(1+r_t)a_{g,t} + W_t(1-\tau_t^L)E_tl_g + ts_t^D + ts_t^T$$ $$\forall t: a_{1,t} = a_{G+1,t} = 0$$ - $P_{C,t}$ and $P_{I,t}$: price level for consumption and investment - W_t and R_t : wage and rental rate - Household at age g own labor endowment $l_g = 1, \forall g \in [16, 65]$ - labor supply is adjusted for labor supply frictions τ_t^L and human capital index $E_{n,t}$ - Households save or borrow in the quantity of $a_{n,g+1,t+1}$ under interest rate \bigcirc Detail $$r_{t+1} = \frac{R_{t+1}}{P_{I,t+1}} - \delta$$ - Transfers are equally distributed across the households - ▶ ts_t^D is the trade deficit induced transfer (Caliendo et.al, 2018) ▶ Detail - \blacktriangleright ts_t^T accidental death induced transfer: saving left by households who die before age $G \blacktriangleright$ Detail ## Trade (I omit time t subscript to simplify notation) - "Iceberg" trade costs: $\kappa_{ni}^j \geq 1$ for country n by sector j goods from country i - Following Eaton and Kortum (2002), the fraction of country n's expenditures in sector j goods source from country i is: $$\pi_{ni}^{j} = \frac{\lambda_{i}^{j} \left(c_{i}^{j} \kappa_{ni}^{j} \right)^{-\theta}}{\sum_{i=1}^{N} \lambda_{i}^{j} \left(c_{i}^{j} \kappa_{ni}^{j} \right)^{-\theta}}$$ (6) • c_n^j is the unit price of an input bundle in country n sector j $$c_n^j \equiv \Upsilon_n^j \left[(W_n)^{\beta_n^j} (R_n)^{1-\beta_n^j} \right]^{\gamma_n^j} \prod_{k=1}^J P_n^{k\gamma_n^{k,j}}$$ (7) * P_n^j is the price of sectoral composite goods from country n sector j # Aggregation ### Capital $$\sum_{j=1}^{J} \int_{0}^{1}
k_{n,t}^{j}(\omega) d\omega = K_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g-1,t-1} a_{n,g,t}$$ (8) Labor $$\sum_{j=1}^{J} \int_{0}^{1} l_{n,t}^{j}(\omega) d\omega = N_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g,t} l_{g}$$ (9) #### Consumption $$C_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g,t} c_{n,g,t}$$ (10) Investment $$I_{n,t} \equiv K_{n,t+1} - (1 - \delta) K_{n,t} \tag{11}$$ → Back 7 Financial Market #### The financial market works with zero frictions - Receive deposits of $P_{I,t} \sum a_{g,t} N_{g,t}$ from individuals - ▶ Repay those individuals an amount $(1 + r_t) P_{I,t} \sum a_{g,t} N_{g,t}$ - Loaned an amount $K_t = \sum a_{g,t} N_{g,t}$ to firms to use in production - ▶ Receives an amount $P_{I,t} \left(1 + \frac{R_t}{P_{I,t}} \delta\right) K_t$ from firms - Market clear implies $$r_t = \frac{R_t}{P_{I,t}} - \delta \tag{12}$$ ▶ Back Trade deficit-induced transfers #### → Back - A pre-determined share of GDP, $\phi_{n,t}$ is sent to a global portfolio, which in turn disperses a per-capita lump-sum transfer, T_t^P , to every country - The net transfer, also recognized as trade deficit, are calculated as: $$D_{n,t} = -\phi_{n,t} \left(R_{n,t} K_{n,t} + W_{n,t} E_{n,t} N_{n,t} \right) + \bar{L}_{n,t} T_t^P$$ (13) • Dividing by the total economically relevant population $\bar{L}_{n,t}$ implies that total bequests are equally distributed across the population $$D_{n,t} = -\phi_{n,t} \left(R_{n,t} K_{n,t} + W_{n,t} E_{n,t} N_{n,t} \right) + \frac{\bar{L}_{n,t}}{\sum_{n=1}^{N} \bar{L}_{n,t}} \sum_{n=1}^{N} \phi_{n,t} \left(R_{n,t} K_{n,t} + W_{n,t} E_{n,t} N_{n,t} \right)$$ (14) #### Demographics-induced transfers • $TRSV_{n,t}$ is defined as demographic structure change-induced transfer which is due to the number of population changes between cohort (s-1,t-1) and (s,t) $$TRSV_{n,t} = P_{n,I,t} (1 + r_{n,t}) \sum_{g=E+2}^{E+S} (\eta_{n,g-1,t-1} - \eta_{n,g,t}) a_{n,g,t}$$ (15) - ► The number of population change can either counted as net death $(\eta_{n,g-1,t-1} \eta_{n,g,t} > 0)$ or net immigrant $(\eta_{n,g-1,t-1} \eta_{n,g,t} < 0)$ - ▶ The asset change due to net death is treated as positive bequests - ▶ The net immigrant (g, t) enter country n with zero assets, and is treated as negative bequests → Back # Steady State **Definition 1: Stationary balanced growth equilibrium**: A stationary balanced growth competitive equilibrium in the perfect foresight overlapping generations model with G period lived agents, and exogenous population dynamics, is defined as constant allocations of stationary consumption, capital and prices: $\left\{ \{c_{n,g}\}_{g=1,\ n=1}^{G,\ N},\ \{b_{n,g+1}\}_{g=1,\ n=1}^{G-1,N},\ \{W_n,\ R_n\}_{n=1}^N\right\}$, such that: - i. The households taking prices transfer and deficit as given, optimize lifetime utility. - ii. Firms taking prices as given, minimize production cost. - iii. Each country purchases intermediate varieties from the least costly supplier/country subject to the trade cost. - iv. All markets are clear. - v. The population distribution reaches a stationary steady-state distribution before the economy reaches a steady state. Equations Back 7 #### Steady State (1/2) ## Table: Steady-state conditions (1/2) | g_n | $N_{n,g,t+1} = (1+g_n) N_{n,g,t}$ | $\forall n,t \in [T-1,\infty)$ | |-----------------|---|--------------------------------| | g_{λ^j} | $\lambda_{n,t+1}^j = (1 + g_{\lambda^j}) \lambda_{n,t}^j; (1 + g_{\lambda^j}) = (1 + g_n)^{\frac{\varphi^j}{(1 - \rho)}} ; 1 + g_{A^j} \equiv (1 + g_{\lambda^j})^{1/\theta}$ | $\forall n,j,t \in [T,\infty)$ | | g_{ω} | $X \in \left[\frac{W_{n,t}}{P_{n,C,t}}, \frac{ts_{n,t}^T}{P_{n,C,t}^T}, \frac{ts_{n,t}^D}{P_{n,C,t}}, a_{n,g,t}, c_{n,g,t}\right]; X_{t+1} = \left(1+g_{\omega}\right) X_t; 1+g_{\omega} = \left(1+g_{\lambda j}\right)^{\frac{1}{\beta^2\gamma^2}} = \left(1+g_{\lambda j}\right)^{\frac{1}{\beta^2\gamma^2}}$ | $\forall n,t \in [T,\infty)$ | | $g_{rc_n^j}$ | $X \in \left[\frac{c_{n,t}^{j}}{p_{n,t}^{j,1}}\right]; \ X_{t+1} = \left(1 + g_{rc_{n}^{j}}\right) X_{t}; \ 1 + g_{rc_{n}^{j}} = (1 + g_{\omega})^{\beta^{j}\gamma^{j}} = (1 + g_{\lambda^{j}})^{1/\theta}$ | $\forall n,t \in [T,\infty)$ | | g_K | $X \in \left[C_{n,t}, C_{n,t}^{j}, I_{n,t}, I_{n,t}^{j}, X_{n,t}, Y_{n,t}^{j}, \frac{X_{n,t}^{j}}{P_{n,t}^{j}}, \frac{D_{n,t}}{P_{n,t}^{j}}, \frac{D_{n,t}}{P_{n,t,t}}, \frac{D_{n,t}}{P_{n,t,t}}\right]; X_{t+1} = \left(1 + g_{K}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) \left(1 + g_{n}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) X_{t}; 1 + g_{K} = \left(1 + g_{\omega}\right) X_{t}; 1 + g_{W} X_{t$ | $\forall n,j,t \in [T,\infty)$ | | | $1 + g_{\omega} = (1 + g_n)^{\frac{\varphi^j}{\theta\beta^j\gamma^j(1-\rho)}}; \varphi^j/\varphi^k = \beta^j\gamma^j/\beta^k\gamma^k; \varphi^j = \theta (1-\rho)\beta^j\gamma^j \frac{\log(1+g_{\omega})}{\log(1+g_n)};$ | $\forall n, j$ | | F0 | $\lambda_{n,T+1}^{j} - \lambda_{n,T}^{j} = N_{n,T} ^{\varphi^{j}} \left(\lambda_{n,T}^{j}\right)^{\rho} \left[\sum_{g} \eta_{g}^{j} \bar{N}_{n,g,T}\right]^{\varphi^{j}} \Gamma \left(1-\rho\right)$ | $\forall (n)$ | | H1 | $N_{n,T} \equiv \sum_{g=1}^{G} N_{n,g,T}; \bar{L}_{n,T} \equiv \sum_{g=G_0+1}^{G} N_{n,g,T}; L_{n,T} = \left(1 - \tau_{n,T}^L\right) \sum_{g=G_0+1}^{G} N_{n,g,T} l_g; L_{n,T}^e = E_{n,T} L_{n,T}$ | $\forall (n)$ | | H2 | $P_{n,C,T}c_{n,g,T} + P_{n,I,T}\left(1 + g_{\omega}\right)a_{n,g+1,T} = P_{n,I,T}\left(1 + r_{n,T}\right)a_{n,g,T} + W_{n,T}\left(1 - \tau_{n,T}^{L}\right)E_{n,T}l_{g} + tr_{n,T}^{D} + tr_{n,T}^{T}; g \in [1,G]$ | $\forall (n)$ | | Н3 | $a_{1,T} = a_{G+1,T} = 0; c_{n,g,T} > 0, \{c_{n,g,T}\}_{g=1}^{G}; \{a_{n,g+1,T}\}_{g=1}^{G-1}$ | $\forall (n)$ | | H4 | $tr_{n,T}^T \equiv \frac{D_{n,T}}{N_{n,T}}; tr_{n,T}^D = P_{n,I,T} \left(1 + r_{n,T} \right) \sum_{g=2}^G \left(\frac{\overline{N}_{n,g-1,T}}{1+g_n} - \overline{N}_{n,g,T} \right) a_{n,g,T}$ | $\forall (n)$ | | H4' | $tr_{n,T}^{D} = tr_{n,T}^{D,1} + tr_{n,T}^{D,2} = P_{n,I,T} \left(1 - \delta\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} -
\overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) \sum_{g=2}^{G} \left(\frac{\overline{N}_{n,g-1,T}}{1 + g_n} - \overline{N}_{n,g,T}\right) a_{n,g,T} + P_{n,I,T} \left(\frac{R_{n,T}}{P_{n,I,T}}\right) P_{n,I,T}$ | $\forall (n)$ | | H4" | $P_{n,C,T}c_{n,g,T} + P_{n,I,T}i_{n,g,T} = R_{n,T}a_{n,g,T} + W_{n,T}\left(1 - \tau_{n,T}^L\right)E_{n,T}l_g + tr_{n,T}^{D,2} + tr_{n,T}^T$ | $\forall (n)$ | | H4"" | $P_{n,I,T}i_{n,g,T} = P_{n,I,T} (1 + g_{\omega}) a_{n,g+1,T} - \left[P_{n,I,T} (1 - \delta) a_{n,g,T} + t r_{n,T}^{D,1} \right]$ | $\forall (n)$ | | H5 | $(1+g_{\omega})c_{n,g+1,T} = \left[\left(\beta s_{n,g+1,T}\right) \left(\frac{\psi_{n,g+1,T+1}}{\psi_{n,n,T}}\right) (1+r_{n,T}) \right]^{\sigma} c_{n,g,T}; \forall \ g \in [1,G-1]$ | $\forall (n)$ | | H6 | $C_{n,T} \equiv \sum_{g=1}^{G} N_{n,g,T} c_{n,g,T}; K_{n,T} \equiv \sum_{g=2}^{G} \frac{N'_{n,g-1,T}}{1+a_n} a_{n,g,T}$ | $\forall (n)$ | ### Steady State (2/2) ## Table: Steady-state conditions (2/2) → Back ◀ Back 7 # Transitional Dynamics #### Definition 2: Dynamics equilibrium Given a set of initial capital distributions and exogenous forces across countries and over time, the transitional dynamics equilibrium (equilibrium transition path) in the perfect foresight overlapping generations trade model with G-period lived agents is defined as allocations of consumption, capital and prices: $\left\{ \left\{ c_{n,g} \right\}_{g=1,\ n=1}^{G,\ N},\ \left\{ b_{n,g+1} \right\}_{g=1,\ n=1}^{G-1,N},\ \left\{ W_n,\ R_n \right\}_{n=1}^N \right\}_{t=1,\cdots,T+1}$ satisfies the following conditions: - i. The households at different ages taking prices, transfer and deficit as given, optimize lifetime utility. - iii. Firms taking prices as given, minimize production cost. - iv. Each country purchases intermediate varieties from the least costly supplier/country subject to the trade cost. - v. All markets are clear. ▶ Equations ◆ Back 7 #### Transitional Dynamics (1/2) ## Table: Dynamic equilibrium conditions (1/2) $$\begin{array}{lll} \Pi & \lambda_{n,t+1}^{j} - \lambda_{n,t}^{j} = \left(\lambda_{n,t}^{j}\right)^{\rho} \left(\sum_{g} \eta_{g}^{j} N_{n,g,t}\right)^{\varphi^{j}} \Gamma\left(1-\rho\right) = N_{n,t}^{\varphi^{j}} \left(\lambda_{n,t}^{j}\right)^{\rho} \left(\sum_{g} \eta_{g}^{j} \bar{N}_{n,g,t}\right)^{\varphi^{j}} \Gamma\left(1-\rho\right) & \forall (n,t) \\ \Pi & N_{n,t} \equiv \sum_{g=1}^{G} N_{n,g,t}; \bar{L}_{n,t} \equiv \sum_{g=G+1}^{G} N_{n,g,t}; L_{n,t} = \left(1-\tau_{n,t}^{j}\right) \sum_{g=G+1}^{G} N_{n,g,t} l_{g} = \left(1-\tau_{n,t}^{j}\right) \sum_{g=1}^{G} N_{n,g,t} l_{g}; L_{n,t}^{\varepsilon} = E_{n,t} L_{n,t} & \forall (n,t) \\ \Pi & P_{n,C,t} c_{n,g,t} + P_{n,t,t} a_{n,g+t,t+1} = P_{n,t,t} \left(1+r_{n,t}\right) a_{n,g,t} + W_{n,t} \left(1-\tau_{n,t}^{j}\right) E_{n,t} l_{g} + tr_{n,t}^{D} + tr_{n,t}^{D} + g\left[1,G\right] & \forall (n,t) \\ \Pi & a_{1,t} = a_{G+1,t} = 0; c_{n,g,t} > 0, \left\{c_{n,g,t+g-1}\right\}_{g=1}^{G}; \left\{a_{n,g+1,t+g}\right\}_{g=1}^{G-1} & \forall (n,t) \\ \Pi & tr_{n,t}^{T} \equiv \frac{P_{n,t}}{N_{n,t}}; tr_{n,t}^{D} \equiv P_{n,t,t} \left(1+r_{n,t}\right) \sum_{g=2}^{G} \left(\frac{N_{n,g-1,t-1}-N_{n,g,t}}{N_{n,t}}\right) a_{n,g,t} + P_{n,t,t} \left(\frac{R_{n,t}}{P_{n,t,t}}\right) \left(\frac{N_{n,g-1,t-1}-N_{n,g,$$ Transitional Dynamics (2/2) ### Table: Dynamic equilibrium conditions (2/2) $$\begin{array}{lll} \mathrm{F1} & W_{n,t}L_{n,t}^{e} = \sum_{j=1}^{J} \beta_{n}^{j}\gamma_{n}^{j}\sum_{i=1}^{N}\pi_{in,t}^{j}X_{i,t}^{j}; \; R_{n,t}K_{n,t} = \sum_{j=1}^{J}\left(1-\beta_{n}^{j}\right)\gamma_{n}^{j}\sum_{i=1}^{N}\pi_{in,t}^{j}X_{i,t}^{j} & \forall (n,t) \\ \mathrm{F2} & r_{n,t} = \frac{R_{n,t}}{R_{n,t,t}} - \delta & \forall (n,t) \\ \mathrm{T1} & c_{n,t}^{j} \equiv \Upsilon_{n}^{j}\left[\left(W_{n,t}\right)^{\beta_{n}^{j}}\left(R_{n,t}\right)^{1-\beta_{n}^{j}}\right]^{\gamma_{n}^{j}}\prod_{k=1}^{J}P_{n,t}^{k}\gamma_{n}^{k,j} & \mathrm{where} \; \Upsilon_{n}^{j} \equiv \gamma_{n}^{j}\beta_{n}^{j}\gamma_{n}^{j}\beta_{n}^{j} \gamma_{n}^{j}\beta_{n}^{j} \gamma_{n}^{j}\left(1-\beta_{n}^{j}\right)^{-\gamma_{n}^{j}\left(1-\beta_{n}^{j}\right)}\right]^{T} & \forall (n,j,t) \\ \mathrm{T2} & P_{n,t}^{j} = A^{j} \cdot \left[\sum_{i=1}^{N}\lambda_{i,t}^{j}\left(\beta_{n,i,t}^{j}c_{i,t}^{j}\right)^{-\theta}\right]^{-\theta}^{-\theta} & \forall (n,j,t) \\ \mathrm{T3} & \pi_{ni,t}^{j} \equiv \frac{X_{n,t}^{j}}{N_{ni,t}^{j}} = \frac{\lambda_{i,t}^{j}\left(c_{n,t}^{j}K_{n,n,t}^{j}\right)^{-\theta}}{N_{n}^{j}} & \lambda_{n}^{j}\left(\frac{A^{j}c_{i,t}^{j}K_{n,i,t}^{j}}{P_{n,t}^{j}}\right)^{-\theta} \\ \mathrm{T4} & P_{n,C,t}C_{n,t} + P_{n,t,t}A_{n,t+1} = \left(1-\frac{R_{n,t}}{P_{n,t,t}}A_{n,t} + D_{n,t} = R_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e} + D_{n,t} \equiv IN_{n,t} \\ \mathrm{T4} & P_{n,C,t}C_{n,t} + P_{n,t,t}K_{n,t+1} = \left(1+\frac{R_{n,t}}{P_{n,t,t}}A_{n}\right) P_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e} + D_{n,t} \\ \mathrm{T5} & K_{n,t+1} = I_{n,t} + \left(1-\delta\right)K_{n,t} \\ \mathrm{T6} & \sum_{j=1}^{J}\sum_{i=1}^{N}X_{n,t}^{j} - \sum_{j=1}^{J}\sum_{i=1}^{N}X_{n,t}^{j} = NX_{n,t} = -D_{n,t} \\ \mathrm{T6} & X_{n,t}^{j} = \alpha_{c,n}^{j}P_{c,n,t}C_{n,t} + \alpha_{f,n}^{j}P_{n,t}I_{n,t} + \sum_{k=1}^{J}\gamma_{n}^{j,k}\left(\sum_{i=1}^{N}X_{i,t}^{k}\right) \\ \mathrm{T7} & D_{n,t} = -\phi_{n,t}\left(R_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e}\right) + N_{n,t}T_{n}^{p} : \sum_{n=1}^{N}\gamma_{n,t}^{j,k}\left(R_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e}\right) \\ \mathrm{T7} & D_{n,t} = -\phi_{n,t}\left(R_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e}\right) + \sum_{n=1}^{N}\gamma_{n,n}^{j,k}\left(N_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e}\right) \\ \mathrm{T7} & D_{n,t} = -\phi_{n,t}\left(R_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e}\right) + \sum_{n=1}^{N}\gamma_{n,t}^{j,k}\left(N_{n,t}^{j,k} + N_{n,t}^{j,k}\right) \\ \mathrm{T7} & D_{n,t} = -\phi_{n,t}\left(R_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e}\right) + \sum_{n=1}^{N}\gamma_{n,t}^{j,k}\left(N_{n,t}^{j,k} + N_{n,t}^{j,k}\right) \\ \mathrm{T7} & D_{n,t} = -\phi_{n,t}\left(R_{n,t}K_{n,t} + W_{n,t}L_{n,t}^{e}\right) + \sum_{n=1}^{N}N_{n,t}^{j,k}\left(N_{n,t}^{$$ → Back ◀ Back 7 ## Initial and Final Steady States #### Why 1970-2100? • Households born in 2020 are forward-looking; model extends to 2100 to anchor expectations. #### Initial Steady State (1970): - Based on average demographics, wage, and population growth from 1965–1975. - Assumes regions start in a steady state with stable growth. #### Final Steady State (2100+): - Fertility and survival rates fixed after 2100. - Growth rates approach steady values but not yet reached. - ▶ Use average growth (2100–2185) to approximate balanced growth. - \bullet Provides terminal conditions for solving the model. ◆ Back 9 # Country Groups Table: Country Groups | couty | countrycode | country_nam | couty | countrycode | country_nam | |-------|-------------|----------------|-------|-------------|--------------------------| | 1 | AUS | Australia | 14 | IND | India | | 2 | AUT | Austria | 15 | IRL | Ireland | | 3 | $_{ m BEL}$ | Belgium | 16 | ITA | Italy | | 4 | BRA | Brazil | 17 | JPN | Japan | | 5 | CAN | Canada | 18 | KOR | Korea, Republic of | | 6 | CHN | China | 19 | MEX | Mexico | | 7 | DEU | Germany | 20 | NLD | Netherlands | | 8 | DNK | Denmark | 21 | PRT | Portugal | | 9 | ESP | Spain | 22 | SWE | Sweden | | 10 | FIN | Finland | 23 | TWN | Taiwan | | 11 | FRA | France | 24 | USA | United States of America | | 12 | GBR | United Kingdom | 25 | ROW | Rest of the World | | 13 | GRC | Greece | | | | ◀ Back 9 ## Sectors Table: Sector Classifications | #1. | 5 Sector Classification | Index 1 | Index 2 | #2. | Sector Description | |-----|-----------------------------------|---------|---------|------------|--| | 1 | Agriculture, Mining and Quarrying | 0.76 | 0.87 | 1 | Agriculture, Hunting, Forestry and Fishing | | 1 | Agriculture, Mining and Quarrying | 0.40 | 0.34 | 2 | Mining and Quarrying | | 2 | Manufacture-labor intensive | 0.59 | 0.72 | 3 | Food, Beverages and Tobacco | | 2 | Manufacture-labor intensive | 0.64 | 0.72 | 4 | Textiles, Textile, Leather and Footwear | | 2 | Manufacture-labor intensive | 0.63 | 0.78 | 5 | Wood and Products of Wood and Cork | | 2 | Manufacture-labor intensive | 0.60 | 0.68 | 6 | Pulp, Paper, Paper, Printing and Publishing | | 3 | Manufacture-capital intensive | 0.47 | 0.44 | 7 | Coke, Refined Petroleum and Nuclear Fuel | | 3 | Manufacture-capital intensive | 0.44 | 0.41 | 8 | Chemicals and Chemical Products | | 2 | Manufacture-labor intensive | 0.56 | 0.60 | 9 | Rubber and Plastics | | 2 | Manufacture-labor intensive | 0.52 | 0.52 | 10 | Other NonMetallic Mineral | | 2 | Manufacture-labor intensive | 0.51 | 0.51 | 11 | Basic Metals and Fabricated Metal | | 2 |
Manufacture-labor intensive | 0.57 | 0.62 | 12 | Machinery, Nec | | 3 | Manufacture-capital intensive | 0.49 | 0.44 | 13 | Electrical and Optical Equipment | | 2 | Manufacture-labor intensive | 0.55 | 0.56 | 14 | Transport Equipment | | 2 | Manufacture-labor intensive | 0.66 | 0.81 | 15 | Manufacturing, Nec; Recycling | | 3 | Manufacture-capital intensive | 0.41 | 0.33 | 16 | Electricity, Gas and Water Supply | | 4 | Services-labor intensive | 0.72 | 0.93 | 17 | Construction | | 4 | Services-labor intensive | 0.61 | 0.95 | 18 | Wholesale and Retail Trade | | 4 | Services-labor intensive | 0.76 | 0.91 | 19 | Hotels and Restaurants | | 4 | Services-labor intensive | 0.68 | 0.89 | 20 | Transport and Storage | | 5 | Services-capital intensive | 0.42 | 0.50 | 21 | Post and Telecommunications | | 5 | Services-capital intensive | 0.50 | 0.51 | 22 | Financial Intermediation | | 5 | Services-capital intensive | 0.44 | 0.40 | 23 | Real Estate, Renting and Business Activities | | 4 | Services-labor intensive | 0.75 | 0.86 | 24 | Community Social and Personal Services | #### Time Invariant Parameters | Index | Description | Value or source | |--|--|---| | N | # of countries | 5: CHN; Asian 5; USA and CAN; EUR; ROW | | | | Asian 5: JPN, TWN, KOR, AUS, IND | | J | # of sectors | 5: Agriculture; | | | | $\{Labor-, Capital-intensive\} \otimes \{Manu., Services\}$ | | $G_0 + 1$ | Age join labor market | 16 | | $G_1 + 1$ | Retried age | 66 | | G | Lifespan for households | 85 | | σ | Risk aversion | 1 | | $\rho_{knowledge}$ | Existing knowledge stock coefficient | 0.7 (Burea and Oberfield, 2019) | | φ^j | Idea duplication coefficient | [0.67, 0.28, 0.19, 0.69, 0.41] | | β | Annual discount factor | 0.96 | | δ | Capital depreciation rate | 0.06 | | θ | Trade elasticity | 4 | | ρ | Elasticity of substitution between varieties | 2 | | $\gamma^{k,j}$ | Sectoral composite goods shares in output | IO table (average across t) | | γ^{j} | Value added shares in output | IO table (average across t) | | β^{j} | Labor's share in value added | IO table (average across t) | | $\gamma^{k,j}$ γ^j β^j α^j_C α^j_I $\eta^j_{n,t}$ | Preference parameters | IO table (average across t) | | $lpha_I^j$ | Investment parameters | IO table (average across t) | | $\eta_{n,t}^j$ | Idea coefficient | Calculation | ◀ Back 9 ### Time Varying Driving Forces | Index | Description | Value or source | | | | |--|----------------------------|-----------------|--|--|--| | Time Varing Shocks | | | | | | | N_{n,t_0} | Initial labor supply | PWT 10.01 | | | | | \overline{N}_{n,g,t_0} | Initial age distribution | United Nations | | | | | $s_{n,g,t}$ | Conditional survival rate | United Nations | | | | | $f_{n,g,t}$ | Fertility rate | United Nations | | | | | $f_{n,g,t} \\ au_{n,t}^L$ | Labor supply wedges | PWT | | | | | $\phi_{n,t}$ | Trade imbalance wedges | IO table | | | | | $\phi_{n,t} \\ \lambda_{n,t}^j \\ \kappa_{ni,t}^j$ | Knowledge stock | Match real data | | | | | $\kappa_{ni,t}^{j}$ | Trade cost | Match real data | | | | | $\psi_{n,t}$ | Saving wedges | Match real data | | | | | $\psi_{n,g}$ | Steady state saving wedges | Match real data | | | | | Time Varing Endogenous Variables | | | | | | | $N_{n,t}$ | Total labor supply | PWT 10.01 | | | | | $\overline{N}_{n,g,t}$ | Age distribution | United Nations | | | | ◀ Back 9 Key details ## Several key time-varying shocks $$\begin{pmatrix} \lambda_{n,t}^j \\ \kappa_{ni,t}^j \\ \psi_{n,t} \\ \phi_{n,t} \end{pmatrix} \equiv \begin{pmatrix} \text{knowledge stock} \\ \text{trade cost} \\ \text{saving wedges} \\ \text{trade imbalance wedges} \end{pmatrix} \leftrightarrow \begin{pmatrix} \text{sector prices} \\ \text{sector bilateral trade flows} \\ \text{aggregate saving rate} \\ \text{aggregate trade imbalance} \end{pmatrix}$$ ## Knowledge stock parameter, $\eta_{n,q}$ Details - Assume that all working-age people have the same $\eta_g > 0, g \in [16, 65]$ - In 1970, the world economy is assumed to be on the balanced growth path, which implies $$\eta_{n,g} = \frac{1 + g_{\lambda,1970}}{\left(\lambda_{n,1970}\right)^{\rho-1} \left(N_{n,g \in [16,65],1970}\right)^{\varphi} \Gamma(1-\rho)}$$ ullet One can back out exogenous productivity shock, $\epsilon_{n,t}$, from $$\lambda_{n,t+1} - \lambda_{n,t} = N_n^{\varphi} (\lambda_{n,t})^{\rho} \left[\sum_g \eta_{n,g} \bar{N}_{n,g,t} \right]^{\varphi} \Gamma(1-\rho) + \epsilon_{n,t}$$ ### Data sources Table: Data sources | Variable description | Model counterpart | Data source (1971–2020) | Data source (2021–2100) | |--------------------------------|--|-------------------------|-------------------------| | Age distribution | $\tilde{N}_{n,g,t}$ | UN | UN, Imputed | | Population | $N_{n,t}$ | PWT | UN, Imputed | | Employment | $L_{n,t}$ | PWT | Imputed | | Human capital index | $E_{n,t}$ | PWT | Imputed | | Value added | $W_{n,t}L_{n,t}E_{n,t} + R_{n,t}K_{n,t}$ | WIOD & Long IO Table | Imputed | | Gross output* | $P_{n,t}^j y_{n,t}$ | WIOD & Long IO Table | Imputed | | Gross expenditure [*] | $P_{n,t}^j Q_{n,t}^j$ | WIOD & Long IO Table | Imputed | | Trade flow* | $P_{n,t}^j Q_{n,t}^j T_{n,i,t}$ | WIOD & Long IO Table | Imputed | | Intermediate prices** | $P_{n,t}^{j}$ | WIOD & Long IO Table | Imputed | | Consumption*** | $C_{n,t}$ | WIOD & Long IO Table | Imputed | | Investment* * * | $I_{n,t}$ | WIOD & Long IO Table | Imputed | | Initial capital stock*** | $K_{n,t0}$ | PWT | N/A | Notes: * Values are measured in current prices using market exchange rates. ** Prices are measured using PPP exchange rates. *** Quantities are measured as values deflated by prices. # Constructing data from 2021-2200 Impute saving rate, then given total supply of labor and capital, along with the imputed productivity, solving the CP trade model under the fixed trade cost $$\log\left(\frac{sr_{n,t}}{1 - sr_{n,t}}\right) = \alpha_0 + \alpha_1 \log\left(\frac{sr_{n,t-1}}{1 - sr_{n,t-1}}\right) + \alpha_2 Young_{n,t} + \alpha_3 Old_{n,t} + f_n + \epsilon_{n,t}$$ #### Table: SAVING RATE REGRESSION | | (1) | (2) | (3) | |--------------|----------|---------|----------| | VARIABLES | SR | SR | SR | | L1.SR | | 0.89*** | | | | | (32.74) | | | L5.SR | 0.43*** | , , | | | | (8.04) | | | | Young share | -1.06*** | -0.19 | -2.80*** | | | (-3.62) | (-1.34) | (-10.75) | | Old share | -2.40*** | -0.45* | -5.97*** | | | (-4.37) | (-1.66) | (-12.36) | | Constant | -0.22** | -0.04 | 0.04 | | | (-2.24) | (-0.84) | (0.36) | | Observations | 255 | 275 | 280 | | R-squared | 0.891 | 0.968 | 0.836 | | Region FE | YES | YES | YES | # Calibrate Knowledge stock process On the balanced growth path (BLG), population and knowledge stock must grow at a constant rate, with the relation: $$(1+g_{\lambda})^{1-\rho} = (1+g_n)^{\varphi}$$ $1 + g_n$ can be calculated from the population growth rate in 1970, and then averaged across regions. $1 + g_{\lambda}$ can be backed out from the real wage growth rate with the relation: $$1 + g_{\text{real wage}} = (1 + g_{\lambda})^{1/\theta\beta\gamma}$$ Thus, $$\varphi = \frac{(1-\rho)\log(1+g_{\lambda})}{\log(1+g_n)} = \frac{(1-\rho)\theta\beta\gamma\log(1+g_{\text{real wage}})}{\log(1+g_n)}$$ ▶ Back ◀Back 9 # Calibrate Knowledge stock process To calibrate η_g , I assume that all working-age people have the same $\eta_g > 0$. In 1970, the world economy is assumed to be on the balanced growth path, which implies $$1 + g_{\lambda,1970} = (\lambda_{n,1970})^{\rho-1} \left[\sum_{g \in [16,65]} \eta_g N_{n,g,1970} \right]^{\varphi} \Gamma(1-\rho)$$ Thus, $$\eta_g = \frac{1 + g_{\lambda,1970}}{(\lambda_{n,1970})^{\rho-1} \left(N_{n,g \in [16,65],1970}\right)^{\varphi} \Gamma(1-\rho)}$$ → Back ◀ Back 9 Results Detail Figure: Demographic shocks and other wedges Results Petail Figure: Knowledge stocks and trade costs ## Calibration efficiency Targeted Moments and other data Note: vertical axis - model, horizontal axis - data. Figure: Calibration Efficiency ## Calibration results Figure: Demographics Yang Pei (UH) July 7, 2025 ## Calibration results Figure: Demographics ◆ Back 10 ## Calibration results Figure: Demographics ## Calibration results Figure: Demographics Table: Stationary balance growth equilibrium, China | Final Stationary balan | ice growth equil | ibrium at 2100, | China | | |-------------------------------------|------------------|-----------------|-------------|--| | | (1) | (2) | (3) | | | | Baseline | Fert. = RoW | Surv. = RoW | | | i. Demographic variables | | | | | | Survival rate, age 65 | 0.94 | 0.94 | 0.85 | | | Average fertility rate, 0/[21-49] | 0.02 | 0.03 | 0.02 | | | Expected lifespan | 82.3 | 82.3 | 77.3 | | | Share of working age | 0.56 | 0.61 | 0.60 | | | Total pop. (billion) | 0.5 | 3.8 | 0.4 | | | Implied pop. growth after 2100 | 1.010 | 1.011 | 1.010 | | | ii. Balance growth path outcome | es | | | | | Average productivity | normalized as 1 | 1.65 | 0.95 | | | Implied average productivity growth | 1.003 | 1.004 | 1.003 | | | iii. Outcomes in 2100 | | | | | | Capital stock per person | 43.2 | 48.6 | 42.0 | | | Consumption per person | 2.9 | 4.4 | 3.2 | | | Investment per person | 3.04 | 3.46 | 2.95 | | | Income per person | 6.0 | 7.8 | 6.1 | | | Capital - efficient labor ratio | 35.7 | 36.5 | 32.0 | | | Income per worker | 10.7 | 12.8 | 10.1 | | | Real wage rate | 2508 | 3471 | 2347 | | Design ## Comparing baseline scenario with following three scenarios - China's fertility and survival = ROW, both channels work - ▶ Replace China's fertility and survival rates with those of the RoW - Open both channel: allow both productivity and saving change in response to demographic changes - ullet China's fertility and survival =
ROW, only demographic-capital channel works - ▶ Replace China's fertility and survival rates with those of the RoW - ▶ Open capital channel: allow saving change in response to demographic changes - ▶ Mute productivity channel: but retain the baseline productivity changes - China's fertility and survival = ROW, only demographic-idea channel works - Replace China's fertility and survival rates with those of the RoW - ▶ Open productivity channel: allow productivity to change as if China's demographic structure were replaced by that of RoW - Mute capital channel: maintain China's fertility and survival rates, and its implied demographic process Demographic process → Turnpike Theorem Implications for economic growth - China's low fertility and high survival rates compared to those of RoW, showing a short-run and long-run trade-off - ► Short run, a saving-favorable age structure leads to higher capital, and income per worker Capital process Saving-favorable age - ► Long run, after 2060, a lower path of knowledge stocks leads to a lower income per worker Knowledge process ▶ Details Implications for trade pattern change - Overall, China's low fertility and high survival rates compared to those of RoW, showing higher revealed CA on Capital-intensive production - ▶ Demo-capital channel: along the entire path, higher capital per worker—driven by a favorable age structure—enhances the comparative advantage in the capital-intensive sector - ▶ Demo-idea channel (Calibration showing that knowledge stock in the labor-intensive sector is more sensitive to the number of workers): - ★ Short run, more worker, leads to a greater increase in the knowledge stock for labor-intensive goods, thus showing lower RCA index for capital intensive sector - ★ Long run, less worker, leads to a greater slow down in the increase in the knowledge stock for labor-intensive goods, thus showing higher RCA index for capital intensive sector Revealed comparative advantage (RCA) index (Balassa, 1965) ▶ Details # How demographic structure affects China's growth and trade ## Story from quantitative analysis China's low fertility and high survival rates compared to those of RoW, showing a short-run and long-run trade-off - Short run, a saving-favorable age structure leads to higher capital, and income per worker - \star along with a stronger comparative advantage in the capital-intensive sector - $\blacktriangleright\,$ Long run, after 2060, a lower path of knowledge stocks leads to a lower income per worker - ▶ Trade liberalization encourages specialization and selection, extends short-run benefit period (numerical experiments) ## Summary #### How demographic forces shape China's economic growth and trade patterns? #### Empirical Analysis - ▶ A strong positive association between a country's working-age share and: - ★ Productivity growth - ★ Investment or saving share of GDP - An inverse U-shaped response of productivity growth and capital stock per person to a young cohort share shock. #### Model and Counterfactual Analysis - ▶ I build a OLG trade model feature aforementioned two mechanisms - ▶ I find a interesting trade-off in China's demographics compared to RoW's - * Short-run: A saving-favorable age structure leads to higher capital, income per worker, and a stronger comparative advantage in capital-intensive sectors. - ★ Long-run (post-2060): A lower knowledge stock trajectory results in lower productivity and income per worker. - ★ Trade liberalization encourages specialization and selection, extending short-term benefits. #### • Future Work - ▶ Simplify to 2 countries and 2 sectors - Exploring more direct ways to connect demographics and productivity: - * Incorporating age-dependent productivity levels (i.e., the effectiveness of labor varies by age). - ▶ Designing a counterfactual to address: - ★ To what extent demographic changes explain the recent slowdown in China's growth and the reallocation of labor-intensive production. 4 D > 4 B > 4 E > 4 E > 5 E = 9 Q P Trade and China's Economy ## Compare Steady State Back The role of demographics | (1A) | (2A) | (3A) | |---------|---|---| | low | high | high | | high | high | low | | Autarky | Autarky | Autarky | | 60.00 | 71.00 | 71.00 | | 0.05 | 0.05 | 0.01 | | 0.02 | 0.02 | 0.01 | | 0.43 | 0.44 | 0.63 | | | | | | 0.0073 | 0.0086 | 0.0215 | | 0.0026 | 0.0029 | 0.0054 | | 0.0016 | 0.0017 | 0.0038 | | 0.0010 | 0.0012 | 0.0016 | | 0.0167 | 0.0195 | 0.0343 | | | | | | 0.0030 | 0.0032 | 0.0043 | | 0.1788 | 0.1655 | 0.1250 | | | low
high
Autarky
60.00
0.05
0.02
0.43
0.0073
0.0026
0.0016
0.0010
0.0167 | low high high high Autarky Autarky 60.00 71.00 0.05 0.05 0.02 0.02 0.43 0.44 0.0073 0.0086 0.0026 0.0029 0.0016 0.0017 0.0010 0.0012 0.0167 0.0030 0.0032 | - \bullet (2A) v.s. (1A): A higher average lifespan increases savings, which, acting as a supply of capital, leads to higher capital per efficient person - \bullet (3A) v.s. (2A): With slower population and TFP growth, the number of effective persons grows more slowly. Less capital used to be spread across individuals, leads to higher capital per efficient person - Capital-labor ratio implies a relative abundance of capital relative to labor ## Illustration of turnpike theorem When you are young, you behave as if you will live forever... ▶ Back Sources: Lilia Maliar and Serguei Maliar, 2017 ## Illustration of turnpike theorem Put differently, terminal conditional has limited effects on the growth path Dorfman, Samuelson, Solow 1958 McKenzie 1963 ## Compare Steady State Back The role of trade | | (3A) | (3B) | |---------------------------------|---------|------------| | Survival rate | high | high | | Fertility rate | low | low | | Trade cost | Autarky | Free trade | | Average lifespan | 71.00 | 71.00 | | Population growth | 0.01 | 0.01 | | Implied TFP growth | 0.01 | 0.01 | | Working age share | 0.63 | 0.63 | | Per efficient person | | | | Capital stock | 0.022 | 0.061 | | Output | 0.005 | 0.015 | | Consumption | 0.004 | 0.011 | | Investment | 0.002 | 0.005 | | capital - efficient labor ratio | 0.034 | 0.097 | | Price ratio | | | | Real wage rate | 0.004 | 0.012 | | Real rental rate | 0.125 | 0.125 | | | | | \bullet (3B) v.s. (3A) : Trade stimulate capital accumulation # Compare Steady State • Back | | (1A) | (1B) | (2A) | (2B) | (3A) | (3B) | | | |---------------------------------|--------|--------|--------|--------|--------|--------|--|--| | Survival rate | low | | hi | high | | high | | | | Fertility rate | hi | gh | high | | low | | | | | Trade cost | 100 | 1 | 100 | 1 | 100 | 1 | | | | Average lifespan | 60.00 | 60.00 | 71.00 | 71.00 | 71.00 | 71.00 | | | | Population growth | 0.05 | 0.05 | 0.05 | 0.05 | 0.01 | 0.01 | | | | Implied TFP growth | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | | | | working age share | 0.43 | 0.43 | 0.44 | 0.44 | 0.63 | 0.63 | | | | Per efffcient person | | | | | | | | | | Capital stock | 0.0073 | 0.0205 | 0.0086 | 0.0244 | 0.0215 | 0.0609 | | | | Output | 0.0026 | 0.0073 | 0.0029 | 0.0081 | 0.0054 | 0.0152 | | | | Consumption | 0.0016 | 0.0046 | 0.0017 | 0.0048 | 0.0038 | 0.0107 | | | | Investment | 0.0010 | 0.0028 | 0.0012 | 0.0033 | 0.0016 | 0.0046 | | | | capital - efficient labor ratio | 0.0167 | 0.0473 | 0.0195 | 0.0553 | 0.0343 | 0.0970 | | | | Price ratio | | | | | | | | | | Real wage rate | 0.0030 | 0.0085 | 0.0032 | 0.0092 | 0.0043 | 0.0121 | | | | Real rental rate | 0.1788 | 0.1788 | 0.1655 | 0.1655 | 0.1250 | 0.1250 | | | ## Transitional dynamics: Knowledge stock changes over time **Control of the Control ## Before t = 1, economy is on the old balance growth path **Shock at** t = 1: survival Rate (or fertility Rate) changed forever $$\frac{\lambda_{t+1} - \lambda_t}{\lambda_t} = (\lambda_t)^{\rho - 1} \left(\sum_g \eta_g N_{g,t} \right)^{\varphi} \Gamma \left(1 - \rho \right)$$ Simple application: assume only working-age people contribute to new idea generation • $$\eta_q = c > 0$$ if $g \in (16, 65)$ and $\eta_q = 0$ if $g \notin (16, 65)$ # Transitional dynamics - pop. growth slows down. Sym. Close Low fertility Rate: beneficial in the short run, but adverse in the long run. - Short run, a lower population, raises capital per person above the old growth path - Long run, productivity growth slows down, capital per person ultimately below old growth path = 4000 ## Transitional dynamics - pop. growth slows down. Close v.s. Open #### Low fertility Rate Plus Trade liberalization Trade liberalization extends the beneficial period (during which capital per person remains above the old growth path). ## Transitional dynamics: Population changes over time Pack Before t = 1, economy is on the old balance growth path Shock at t = 1: survival Rate (or fertility Rate) changed forever TS2: Population growth slow down - from high fertility rate to low # Transitional dynamics - living longer. Sym. Close economy Open economy Back A high survival rate stimulates capital accumulation and elevates the balanced growth path. ## Transitional dynamics - living longer. Close v.s. Open Back Trade also stimulates capital accumulation and elevates the balanced growth path. ## Transitional dynamics 1 - living longer. Sym. Open economy • back # Transitional dynamics 2 - pop. growth slow down. Sym. Open economy • back Age-varying savings stock ## Capital process ▶ Back Knowledge stock process #### Knowledge stock, China ## Knowledge stock process ▶ Back Income process → Back Trade patterns Revealed comparative advantage index, capital intensive sector → Back # Balassa (1965) Revealed comparative advantage (RCA) index $$RCA_{nj} = \frac{\frac{Export_{n,j}}{\sum_{n} Export_{n,j}}}{\frac{\sum_{j} Export_{n,j}}{\sum_{j,n}
Export_{n,j}}}$$ (16) where n means country, j means sector, $Export_{n,j}$ means the value of country n's sector j exports. • The higher RCA_{nj} , the higher degree of specialization for country n in sector j products. → Back APPENDIX 2: The Decline in China's Trade Share of GDP: A Structural Accounting ## China Trade and Migrants Data $\mathbf{Migrants}$: people living outside of their registration (hukou) province. Source: WDI Database and China Statistical Yearly book ## Detail Data Source: WDI Database ## Detail Data Note: The solid line represents the year 2001 when China joined the WTO. The three dotted vertical lines represent the years 2002, 2007, and 2015, respectively. These are the years for which I conducted the counterfactual analysis. Source: WDI Database ## China trade share at sector level and migrants share Table: China trade share at sector level and migrants share | | 2002 | 2007 | 2015 | | 2002 | 2007 | 2015 | |--------------------------|--------|------------------------|--------|----------------------------|----------------|------------------------|----------------| | Import (% of GDP) | 19.68% | 25.78% | 17.41% | Export (% of GDP) | 23.46% | 36.39% | 20.03% | | Agricultural Component | 0.48% | 0.80% | 0.61% | Agricultural Component | 0.37% | 0.31% | 0.14% | | Light Industry Component | 2.03% | 1.36% | 1.07% | Light Industry Component | 5.21% | 6.61% | 3.17% | | Heavy Industry Component | 15.16% | $\boldsymbol{20.77\%}$ | 10.08% | Heavy Industry Component | 12.98% | 24.22 % | 13.13% | | Services Component | 2.01% | 2.86% | 5.65% | Services Component | 4.91% | 5.51% | 3.59% | | | 2002 | 2007 | 2015 | | 2002 | 2007 | 2015 | | Inner Trade (% of GDP) | 26.95% | 46.64% | 50.53% | China Trade (% of World) | 4.59% | 6.72% | 10.05% | | Agricultural Component | 1.37% | 2.31% | 2.23% | China GDP (% of World) | 6.49% | 9.24% | 14.71% | | Light Industry Component | 4.51% | 5.86% | 6.11% | | | | | | Heavy Industry Component | 16.33% | $\boldsymbol{27.85\%}$ | 24.41% | | 2000 | 2005 | 2015 | | Services Component | 4.74% | 10.61% | 17.79% | China Migrants (% of pop.) | 29.40 % | $\boldsymbol{34.00\%}$ | 33.20 % | - Heavy industry trade share change accounts for main change of China's Trade share change - Migrants share changes more during period 2000-2005 than period 2005-2015 ◆ Back 14 ## China trade share at regional level Table: China trade share at regional level | Trade (% of GDP) | 2002 | 2007 | 2015 | | 2002 | 2007 | 2015 | | | | |---|--------|------------------------|-----------------------|----------------------|--------|--------|-------|--|--|--| | Aggregate | 21.57% | 31.09% | 18.72% | - | - | - | - | | | | | Component classified by China regions | | | | | | | | | | | | NorthEast (NE) | 1.16% | 1.96% | 0.72% | SouthernCoastal (SC) | 8.31% | 7.55% | 6.13% | | | | | BeijingTianjin (BT) | 1.72% | 2.78% | 1.58% | Central (CE) | 0.80% | 2.24% | 1.02% | | | | | NorthernCoastal (NC) | 1.58% | 2.81% | 1.83% | North West (NW) | 0.39% | 1.60% | 0.51% | | | | | EasternCoastal (EC) | 7.08% | $\boldsymbol{10.83\%}$ | $\boldsymbol{6.14\%}$ | SouthWest~(SW) | 0.53% | 1.31% | 0.78% | | | | | Component classified by foreign regions | | | | | | | | | | | | USA | 2.86% | 3.97% | 3.22% | AUS | 0.42% | 0.73% | 0.72% | | | | | JPN | 2.83% | 2.99% | 1.52% | GBR | 0.45% | 0.61% | 0.38% | | | | | KOR | 1.33% | 1.92% | 1.38% | FRA | 0.42% | 0.66% | 0.43% | | | | | TWN | 1.22% | 1.54% | 0.76% | IND | 0.21% | 0.54% | 0.55% | | | | | DEU | 0.96% | 1.68% | 0.82% | ITA | 0.30% | 0.47% | 0.26% | | | | | NLD | 0.20% | 0.32% | 0.15% | CAN | 0.33% | 0.55% | 0.42% | | | | | RUS | 0.31% | 0.64% | 0.37% | ROW1 | 9.74% | 14.47% | 7.73% | | | | | G6 | 5.32% | 7.93% | 5.54% | | | | | | | | | AS3 | 5.37% | $\boldsymbol{6.45\%}$ | 3.66% | ROW2 | 10.88% | 16.70% | 9.52% | | | | - Eastern coastal and Southern coastal trade change accounts for main change of China's trade share change - As main trade partner of China, G6 is as important as Asian3 ### Literature Review - Ricardian trade model Eaton and Kortum (2002), Caliendo and Parro (2015), Waugh (2010); Rodríguez, et.al(2020), Tombe and Zhu (2020) - Trade and geographical distribution of labor and economic activity Allen and Arkolakis (2014), Caliendo, Parro, Rossi-Hansberg, and Sarte (2018), Caliendo, Dvorkin, and Parro (2019), Rodriguez-Clare, Ulate, and Vasquez (2020) - Structural accounting decomposition Swiecki (2014); Sposi, et.al(2018); Choi, et.al(2018); - Trade and Chinese economy Brandt and Holz (2006), Brandt, Tombe, and Zhu (2013), Brandt and Lim (2020), Fan(2020), Alessandria, Khan, Khederlarian, Ruhl, and Steinberg (2021), Campante, Chor, and Li (2023) ✓ Back 15 ### Model #### Overview - Multi-country, multi-sector model with Eaton-Kortum Ricardian trade - ▶ N_0 China regions plus $N_1 = N N_0$ other regions #### Production $$q_n^j(\omega^j) = Z_n^j(\omega^j) l_n^j(\omega^j)^{\gamma_n^j} \prod_{k=1}^J m_n^{k,j}(\omega^j)^{\gamma_n^{k,j}}$$ - Intermediate goods, $q_n^j(\omega^j)$ are produced by labor, and sectoral composite intermediate good - Variety-specific productivity $z_{n,t}^j\left(\omega\right)$ drawn from Fréchet $F_{n,t}^j\left(z\right)=exp(-\lambda_{n,t}^jz^{-\theta})$ - Sector composite good used in consumption, and intermediates #### Trade - Asymmetric iceberg costs - Trade, determined by Ricardian comparative advantage, directly affects sectoral reallocations $$\pi_{ni}^j = \frac{\lambda_i^j \left(\kappa_{ni}^j c_i^j\right)^{-\theta_j}}{\sum_{i=1}^N \lambda_i^j \left(\kappa_{ni}^j c_i^j\right)^{-\theta_j}} \; ; \quad c_n^j \propto w_n^{\gamma_n^j} \prod_{k=1}^J P_n^{k \gamma_n^{k,j}}$$ # Utility function Each worker is endowed with 1 unit of labor. For each worker registered in region m, if this worker choosing working in region n, the Cobb-Douglas utility is: $$U(\mathcal{C}_n) \equiv \mathcal{C}_n \equiv \prod_{k=1}^J \mathcal{C}_n^{k \alpha_n^k}, \sum_{k=1}^J \alpha_n^k = 1$$ (17) $$\sum_{k} P_n^k C_n^k = P_n C_n = \mathcal{I}_n \tag{18}$$ $$\mathcal{I}_n L_n = I_n \tag{19}$$ For each individual people choosing to work in region n - his consumption on sector k composite intermediate good is \mathcal{C}_n^k - his aggregate consumption or utility is defined as C_n - his wage rate is w_n - Real income for each individual worker in region n is defined as $W_n \equiv \frac{w_n L_n + D_n}{P_n L_n}$ 4 Pools 16 ### Model Labor flow under migration costs For each worker with registration place (a.k.a hukou) in region m moves to region n, the utility is: $$U^{n,m} = \frac{z(\omega)}{\nu^{n,m}} U(\mathcal{C}_n)$$ - Deterministic part $I: C_n$, real consumption Detail - Deterministic part II: $\nu^{n,m} \ge 1$, a proportional ratio captures utility loss when people choose to migrate out of registration place - Idiosyncratic part (Preference Shiftier for Moving) : $z(\omega)$ drawn from Frechet Distribution with mean 1 and variance $(1/\kappa)$ - ▶ The utility of people making the same migration chooses (e.g. $m \to n$) are still heterogeneous across individuals The fraction of people migrate from m to n $$\mathbf{m}^{n,m} = \frac{\left(\frac{W_n}{\nu^{n,m}}\right)^{\kappa}}{\sum_{n'}^{N_0} \left(\frac{W_{n'}}{\nu^{n',m}}\right)^{\kappa}}$$ W_n : real income of representative worker migrates to region n ◆ Back 16 4日 > 4目 > 4目 > 4目 > 目目 からで # Trade cost, Price and Equilibrium Condition - Trade cost follow the usual "iceberg" form: For country n, to receive 1 unit good from country i sector j, country i need transport $\kappa_{ni}^j \geq 1$ units good. - c_n^j : The cost of a bundle of labor and sectoral composite intermediate good of country n sector j. - $p_n^j(\omega^j)$: the price of intermediate good in country n. - P_n^j : the price of sector composite intermediate good in country n. - X_{ni}^{j} : The expenditure in country n of sector j goods from country i. - X_n^j : The expenditure in country n of sector j goods. - Trade cost follow the usual "iceberg" form: For country n, to receive 1 unit good from country i sector j, country i need transport $\kappa_{ni}^j \geq 1$ units good. $$c_{n}^{j} = \Upsilon_{n}^{j} w_{n}^{\gamma_{n}^{j}} \prod_{k=1}^{J} P_{n}^{k} \gamma_{n}^{j,k}, \ p_{n}^{j}(\omega^{j}) = \min_{i} \frac{c_{i}^{j} \kappa_{ni}^{j}}{z_{n}^{j}(\omega^{j})}, \ P_{n}^{j} \underset{a.e}{\rightarrow} A_{j} \Phi_{n}^{j} - \frac{1}{\theta_{j}}, \Phi_{n}^{j} = \sum_{i=1}^{N} \lambda_{i}^{j} \left(\kappa_{ni}^{j} c_{i}^{j}\right)^{-\theta_{j}},$$ $$\pi_{ni}^{j} = \frac{X_{ni}^{j}}{\sum_{m=1}^{N} X_{nm}^{j}} = \frac{X_{ni}^{j}}{X_{n}^{j}}$$ ◆ Back 16 # Model # Equilibrium Given the model parameters $(\gamma_n^j, \gamma_n^{k,j}, \sigma^j, \alpha_n^k, \theta, \kappa)$, sectoral TFP and bilateral trade costs $(\lambda_n^j, \kappa_{ni})$, labor mobility frictions $(\nu^{n,m})$, and data on each region's trade deficit, initial total population (D_n, L_n, \bar{L}_m) , there exist unique values of labor migration share, expenditure share, and wage rate $\pi_{ni}^j, m^{n,m}, w_n$ that can solve the equations in following table. | (F1) | $c_n^j = \Upsilon_n^j w_n^{\gamma_n^j} \prod_{k=1}^J P_n^{k \gamma_n^{k,j}}; \Upsilon_n^j \equiv \prod_{k=1}^J \gamma_n^{k,j - \gamma_n^{k,j}} \gamma_n^{j - \gamma_n^j}$ | $\forall (n,j)$ | |-------|--|-----------------| | (F2) | $P_n^j = A^j \left(\sum_{i=1}^N \lambda_i^j \left(\kappa_{ni}^j c_i^j\right)^{-\theta}\right)^{-\frac{1}{\theta}}; A^j = \Gamma\left(\frac{1+\theta-\sigma^j}{\theta}\right)^{\frac{1}{(1-\sigma^j)}}$ | $\forall (n,j)$ | | (F3) | $\pi_{ni}^{j} = \frac{\lambda_{i}^{j} (c_{i}^{j} \kappa_{ni}^{j})^{-\theta}}{\sum_{m=1}^{N} \lambda_{m}^{j} (c_{m}^{j} \kappa_{nm}^{j})^{-\theta}} =
\lambda_{i}^{j} \left(A^{j} \frac{c_{n}^{j} \kappa_{ni}^{j}}{P_{n}^{j}} \right)^{-\theta}$ | $\forall (n,j)$ | | (H1) | $P_{n=\prod_{j=1}^{J} \left(\frac{P_{n}^{j}}{\alpha_{n}^{j}}\right)^{\alpha_{n}^{J}}$ | $\forall (n)$ | | (H2) | $W_n \equiv \frac{I_n}{P_n I_n}$; $w_n L_n + D_n = I_n$ | $\forall (n)$ | | (H3) | $m^{n,m} = \frac{\sum_{n'}^{NO} \left(\frac{w_n}{v^{n,m}}\right)^{\kappa}}{\sum_{n'}^{NO} \left(\frac{w_{n'}}{v^{n',m}}\right)^{\kappa}}$ | $\forall (n,m)$ | | (H4) | $L_n = \sum_{m=0}^{N_0} m^{n,m} L_m$ | $\forall (n)$ | | (M1) | $X_n^j = \alpha_n^j I_n + \sum_{k=1}^J \gamma_n^{j,k} \left(\sum_{i=1}^N X_{in}^k \right)$ | $\forall (n,j)$ | | (M2) | $\sum_{j=1}^{J} \sum_{i=1}^{N} X_{ni}^{j} - D_{n} = \sum_{j=1}^{J} \sum_{i=1}^{N} X_{in}^{j}$ | $\forall (n,j)$ | | (M2') | $w_n L_n = \sum_{j=1}^J \gamma_n^j \sum_{i=1}^N \pi_{in}^j X_i^j$ | $\forall (n)$ | ### Mechanism #### Analytical Solution #### Under one-sector version of the model and friction-less trade TradeShareofGDP_{CHN} = $$\frac{1}{\beta} \left(1 - \sum_{i \in \mathbb{N}_0} \pi_{ni} \right) = \frac{1}{\beta} \left(\sum_{i \in \mathbb{N}_1} \pi_{ni} \right)$$ (20) $$\pi_{ni} = (Z_i)^{\frac{1}{1+\beta\theta}} \left[\sum_{i=1}^{N} (Z_i)^{\frac{1}{1+\beta\theta}} \right]^{-1}$$ (21) - N_0 regions within China; $N_1 = N N_0$ foreign regions - $\mathbf{Z_n} \equiv \lambda_{\mathbf{n}} \mathbf{L_n}^{\theta\beta}$ is defied as **Productive Capacity** of the region n #### Under friction-less migration $$L_n = \frac{(\lambda_n)^{\frac{\kappa}{1+\kappa+\beta\theta}}}{\sum_{n'}^{N_0} (\lambda_{n'})^{\frac{\kappa}{1+\kappa+\beta\theta}}} \sum_{m}^{N_0} \bar{L}_m$$ (22) • Higher TFP regions with higher labor supply ### Mechanism Intuition Intuition: Comparative Advantage (CA) and specialization - TFP - ▶ As China's TFP increases, all else equal, because of **CA** forces, China produce more varieties, its share of total spending on domestic goods will increase; hence, the import share will decline. - Trade cost - ▶ International trade cost increase: China specialize more varieties, trade share decrease - ▶ Intranational trade cost decrease: Foreign specialize relatively less varieties, trade share decrease - Labor supply and Labor mobility cost - ▶ Labor supply decrease: Small country do not need to specialize in too many goods to be able to consume the goods it needs. The country will specialize on less varieties (right tail of the distribution), thus trade share increase. - ▶ Labor mobility cost decrease: ambiguous aggregate effects - ★ high TFP region: labor net inflow, specialize more varieties, trade share decrease - ★ low TFP region: labor net outflow, specialize less varieties, trade share increase #### Overview - 8 China regions plus 3 foreign regions; 2 periods - ▶ 8 regions within China mainland: NorthEast; BeijingTianjin; NorthernCoastal; EasternCoastal; SouthernCoastal; Central; NorthWest; SouthWest - ▶ 3 foreign regions: "Asian3": Korean, Taiwan and Japan aggregate together; "G6": G7 country group without Japan; "ROW": aggregate of rest of the world - **2 periods**: 2002 to 2007, 2007 to 2015 - Four broad sectors (ISIC v4) - ▶ **Agriculture**: Agriculture, forestry and fishing (A) - ▶ **Light industry**: Manufacturing (C10-18); - ▶ Heavy industry: Mining and quarrying (B); Manufacturing (C19-33); Electricity, gas, steam and air conditioning supply (D); Water supply, sewerage, waste management and remediation activities (E) - ▶ Services: the remaining sectors from F to S - Data sources - China IRIO table; WIOD table; OECD ICIO table; CEPII; Penn World Tables 10.0; The China's National Census Data Time Varying Driving Forces The structural gravity equation from the model: $$\ln\left(\frac{X_{nit}^{j}}{X_{nnt}^{j}}\right) = \ln\left(\lambda_{it}^{j} \left(c_{it}^{j}\right)^{-\theta}\right) - \ln\left(\lambda_{nt}^{j} \left(c_{nt}^{j}\right)^{-\theta}\right) - \theta \ln\left(\kappa_{nit}^{j}\right)$$ (23) I assume that unobserved trade cost terms $\kappa_{n_i}^j$ can be described by a symmetric component and an exporter-specific component, and the symmetric component is well proxied by population-weighted geographic distance: $$\ln\left(\kappa_{ni}^{j}\right) = \mathrm{EX}_{i}^{j} + \beta^{j} \ln \mathrm{Dist}_{ni} + \epsilon_{ni}^{j} \tag{24}$$ Combine 24 and 23, I get the following structural equation: $$\ln\left(\frac{X_{ni}^{j}}{X_{nn}^{j}}\right) = \left\{\ln\left(\lambda_{i}^{j}\left(c_{i}^{j}\right)^{-\theta}\right) - \theta E X_{i}^{j}\right\} + \left\{-\ln\left(\lambda_{n}^{j}\left(c_{n}^{j}\right)^{-\theta}\right)\right\} - \theta \beta^{j} \ln \text{Dist}_{ni} - \theta \epsilon_{ni}^{j}$$ $$= E_{i}^{j} + M_{n}^{j} + \Theta^{j} \ln \text{Dist}_{ni} + \nu_{ni}^{j}$$ (25) where $E_i^j \equiv S_i^j - \theta \ \text{EX}_i^j, M_n^j \equiv -S_n^j, \Theta^j \equiv -\theta \beta^j$, and $S_n^j \equiv \ln \left(\lambda_n^j \left(c_n^j \right)^{-\theta} \right)$ I run the regression 25 separately for each year and sector, then get estimated fixed effects \hat{E}^j_i and \hat{M}^j_n . 4日 → 4周 → 4 差 → 4 差 → 差 | 重 り 9 ○ ○ Time Varying Driving Forces Trade Cost $$\tilde{\kappa}_{ni}^{j} = \left\{ \left(\frac{X_{ni}^{j}}{X_{nn}^{j}} \right) exp(\tilde{S}_{n}^{j} - \tilde{S}_{i}^{j}) \right\}^{-\frac{1}{\theta}}$$ $$(26)$$ \mathbf{TFP} $$\tilde{c}_n^j = \Upsilon_n^j \tilde{w}_n^{\gamma_n^j} \prod_{k=1}^J \tilde{P}_n^{k} \gamma_n^{k,j} \quad and \quad \Upsilon_n^j \equiv \prod_{k=1}^J \gamma_n^{k,j} \gamma_n^{k,j} \gamma_n^j \gamma_n^j$$ $$(27)$$ $$\tilde{P}_n^j = A^j \left[\left(\frac{exp(\tilde{S}_n^j)}{\pi_{nn}^j} \right) \right]^{-\frac{1}{\theta}}$$ (28) $$\tilde{\lambda}_n^j = \frac{\exp\left(\tilde{S}_n^j\right)}{\left(\tilde{c}_n^j\right)^{-\theta}} \tag{29}$$ Migration cost $$\tilde{\nu}^{n,m} = \left(\frac{\tilde{m}^{n,m}}{\tilde{m}^{m,m}}\right)^{-1/\kappa} \left(\frac{\tilde{W}_n}{\tilde{W}_m}\right) \quad where \quad \tilde{W}_n = \frac{\tilde{w}_n L_n + D_n}{\tilde{P}_n L_n}$$ (30) 4 Back 17 # Regression Results Table: Gravity Equation Results | Sector | | Agriculture |) | L | ight indust | ry | H | eavy indust | try | Service | | | |--------------|----------|-------------|----------|----------|-------------|----------|----------|-------------|----------|----------|----------|----------| | Year | 2002 | 2007 | 2015 | 2002 | 2007 | 2015 | 2002 | 2007 | 2015 | 2002 | 2007 | 2015 | | VARIABLES | | | | | | ln(Xn | i/Xnn) | | | | | | | logdist | -2.18*** | -1.80*** | -1.30*** | -1.82*** | -1.65*** | -0.94*** | -1.77*** | -1.44*** | -1.11*** | -2.09*** | -1.81*** | -1.05*** | | | (-6.96) | (-6.18) | (-4.78) | (-7.82) | (-8.66) | (-3.86) | (-8.10) | (-8.66) | (-5.33) | (-7.84) | (-7.65) | (-3.73) | | M_2 | 0.54 | 2.19*** | 2.63*** | 0.84** | 0.98*** | 0.66 | 0.75** | 0.25 | 0.24 | 0.63 | 0.65 | 0.02 | | | (1.01) | (4.43) | (5.73) | (2.13) | (3.05) | (1.59) | (2.02) | (0.90) | (0.67) | (1.39) | (1.61) | (0.04) | | M_3 | -1.26** | 1.41*** | 0.32 | -1.00** | -1.27*** | -1.71*** | -0.42 | -0.83*** | -1.54*** | 0.15 | -0.04 | -0.65 | | | (-2.35) | (2.84) | (0.70) | (-2.49) | (-3.92) | (-4.11) | (-1.12) | (-2.92) | (-4.33) | (0.33) | (-0.09) | (-1.35) | | M_4 | -0.15 | 1.86*** | 1.13** | -1.24*** | -0.75** | -0.62 | -0.36 | -0.31 | -0.02 | -0.30 | -0.78* | -0.15 | | | (-0.29) | (3.81) | (2.50) | (-3.16) | (-2.36) | (-1.53) | (-0.98) | (-1.10) | (-0.07) | (-0.67) | (-1.96) | (-0.31) | | M_5 | -0.31 | 1.46*** | 1.80*** | 0.14 | 0.22 | -0.28 | 0.96*** | 0.70** | 0.07 | 1.06** | 0.23 | 0.35 | | | (-0.60) | (3.03) | (4.04) | (0.37) | (0.72) | (-0.70) | (2.67) | (2.55) | (0.20) | (2.40) | (0.58) | (0.75) | | M_6 | -1.37** | 0.55 | -0.28 | -1.31*** | -1.12*** | -1.34*** | -0.66* | -0.35 | -0.68* | -0.67 | 0.22 | -0.56 | | | (-2.60) | (1.13) | (-0.61) | (-3.32) | (-3.50) | (-3.27) | (-1.80) | (-1.23) | (-1.95) | (-1.49) | (0.56) | (-1.16) | | M_7 | 0.04 | 1.42*** | -0.12 | 0.72* | 0.78** | -0.17 | 0.70* | 0.40 | -0.13 | 0.72 | 1.16*** | -0.06 | | | (0.09) | (2.94) | (-0.28) | (1.87) | (2.48) | (-0.43) | (1.93) | (1.46) | (-0.39) | (1.62) | (2.94) | (-0.14) | | M_8 | -1.64*** | 0.35 | -0.14 | -0.83** | -0.07 | -0.38 | 0.02 | 0.13 | -0.07 | 1.05** | 0.75* | -0.16 | | | (-3.18) | (0.72) | (-0.31) | (-2.15) | (-0.24) | (-0.94) | (0.06) | (0.46) | (-0.20) | (2.38) | (1.93) | (-0.35) | | M_9 | 1.41* | 2.05*** | 0.51 | 0.81 | 0.70 | -0.51 | 1.04** | 0.35 | 0.09 | 0.06 | -0.61 | -1.84*** | | | (1.91) | (3.01) | (0.81) | (1.48) | (1.58) | (-0.89) | (2.02) | (0.89) | (0.18) | (0.10) | (-1.10) | (-2.77) | | M_{10} | 0.13 | 1.27** | -0.48 | -0.89** | -1.11*** | -1.50*** | -1.26*** | -1.50*** | -1.31*** | -2.20*** | -2.41*** | -2.32*** | | | (0.25) | (2.62) | (-1.05) | (-2.29) | (-3.50) | (-3.70) | (-3.46) | (-5.39) | (-3.79) | (-4.96) | (-6.09) | (-4.91) | | M_{11} | 1.04 | 1.76*** | -0.66 | 0.75 | 0.29 | -1.02* | 0.89* | 0.13 | -0.02 | 1.97*** | 0.98* | -1.34** | | | (1.58) | (2.87) | (-1.15) | (1.52) | (0.71) | (-1.98) | (1.93) | (0.37) | (-0.04) | (3.50) | (1.95) | (-2.24) | | Exporter FE | YES | Observations | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | 110 | | R-squared | 0.975 | 0.977 | 0.975 | 0.976 | 0.979 | 0.966 | 0.976 | 0.980 | 0.970 | 0.982 | 0.981 | 0.967 | t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1. #### Results #### TFP Detail - 2002-2007: China aggregate TFP increased 24% (weighted by average value-added share) - ▶ Heavy industry increased 14% - 2007-2015: China aggregate TFP increased 57% - ► Heavy industry increased 39% #### Trade cost Detail - 2002-2007: For China, - ► Intranational trade cost decreased 17% (weighted by average trade share) - ▶ International trade cost: - ★ Export cost decreased 27% - 2007-2015: For China, - ► Intranational trade cost decreased 4% - ► International trade cost: - ★ Export cost decreased 23% ### Migration cost Detail - 2002-2007: Migration cost decreased 25% (weighted by average labor flow share) - **2007-2015**: Migration cost decreased 4% Results:
TFP change ∢ Return Table: TFP change across sectors and regions | Average TFP 2002 to 2007 | | | | | 2007 to 2015 | | | | | | |--------------------------|-------|--------|------|------|--------------|--------|------|------|--|--| | Change | China | A7-JPN | AS3 | ROW | China | A7-JPN | AS3 | ROW | | | | Aggregate | 1.24 | 1.18 | 1.00 | 1.46 | 1.57 | 1.24 | 1.00 | 1.42 | | | | Agricultural | 1.36 | 1.15 | 1.00 | 1.52 | 1.34 | 0.87 | 1.00 | 1.13 | | | | $Light\ Industry$ | 1.14 | 0.97 | 1.00 | 1.16 | 1.28 | 1.10 | 1.00 | 1.03 | | | | $Heavy\ Industry$ | 1.14 | 1.15 | 1.00 | 1.29 | 1.39 | 1.02 | 1.00 | 0.98 | | | | Services | 1.30 | 1.20 | 1.00 | 1.53 | 1.78 | 1.29 | 1.00 | 1.63 | | | - TFP change of Asian3 normalized to 1. - I aggregate the regional sectoral TFP using average value-added shares (average across year 2002, 2007, and 2015) as weights ◆ Back 17 Results: Labor migration Cost change ◀ Return #### Table: Labor migration cost change | | Labor | migr | ation | cost c | hange | | | | | |----------------------|--------|------|-------|--------|--------|------|------|------|------| | 2002 to 2007 | | | | | Source | | | | | | Destination | Ave. | NE | BT | NC | EC | SC | CE | NW | SW | | Aggregate (Ave) | 0.75 | 0.54 | 2.09 | 0.89 | 1.02 | 0.66 | 0.63 | 0.98 | 0.75 | | NorthEast (NE) | 1.21 | 1.00 | 1.81 | 1.01 | 1.52 | 0.77 | 0.72 | 1.04 | 0.83 | | BeijingTianjin (BT) | 0.26 | 0.24 | 1.00 | 0.31 | 0.44 | 0.28 | 0.22 | 0.35 | 0.20 | | NorthernCoastal (NC) | 0.77 | 0.85 | 1.92 | 1.00 | 1.34 | 0.91 | 0.76 | 1.20 | 0.72 | | EasternCoastal (EC) | 0.63 | 0.52 | 1.36 | 0.53 | 1.00 | 0.55 | 0.46 | 0.73 | 0.38 | | SouthernCoastal (SC) | 1.17 | 0.96 | 2.53 | 1.00 | 1.58 | 1.00 | 0.82 | 1.27 | 0.80 | | Central (CE) | 1.21 | 1.25 | 3.00 | 1.53 | 1.76 | 1.16 | 1.00 | 2.11 | 1.07 | | North West (NW) | 0.77 | 1.06 | 1.90 | 0.85 | 1.17 | 0.59 | 0.57 | 1.00 | 0.63 | | SouthWest~(SW) | 1.04 | 1.47 | 2.65 | 1.35 | 1.83 | 1.32 | 1.00 | 2.05 | 1.00 | | 2007 to 2015 | Source | | | | | | | | | | Destination | Ave. | NE | BT | NC | EC | SC | CE | NW | SW | | Aggregate (Ave) | 0.96 | 0.66 | 0.23 | 1.05 | 1.41 | 0.57 | 1.49 | 0.64 | 1.26 | | NorthEast (NE) | 1.36 | 1.00 | 0.31 | 2.21 | 1.57 | 0.94 | 2.21 | 1.17 | 1.35 | | BeijingTianjin (BT) | 2.21 | 1.15 | 1.00 | 2.21 | 2.21 | 1.29 | 2.72 | 1.24 | 2.32 | | NorthernCoastal (NC) | 0.91 | 0.64 | 0.30 | 1.00 | 0.82 | 0.39 | 1.04 | 0.58 | 1.06 | | EasternCoastal (EC) | 0.63 | 0.46 | 0.26 | 0.89 | 1.00 | 0.56 | 1.31 | 0.44 | 1.14 | | SouthernCoastal (SC) | 1.56 | 0.80 | 0.49 | 1.96 | 1.59 | 1.00 | 2.50 | 1.19 | 1.87 | | Central (CE) | 0.46 | 0.30 | 0.11 | 0.64 | 0.43 | 0.26 | 1.00 | 0.43 | 0.71 | | North West (NW) | 1.51 | 0.72 | 0.30 | 1.44 | 1.45 | 0.69 | 2.09 | 1.00 | 2.14 | | South West (SW) | 0.62 | 0.34 | 0.29 | 0.71 | 0.63 | 0.37 | 1.19 | 0.45 | 1.00 | - 2002-2007: average migration cost change is 0.75 (weighted by average labor flow across 3 years) - 2007-2015: average migration cost change is 0.96 Results: Trade Cost change ◆ Return Table: Average Trade Cost Change across sectors and regions | Average Trade | China ar | nd China | Foreign and Foreign | | | | | |----------------|--------------|--------------|-----------------------|--------------|--|--|--| | $Cost\ Change$ | 2002 to 2007 | 2007 to 2015 | 2002 to 2007 | 2007 to 2015 | | | | | Aggregate | 0.83 | 0.96 | 0.96 | 0.93 | | | | | Agricultural | 0.84 | 0.92 | 0.98 | 1.10 | | | | | Light Industry | 0.85 | 1.01 | 1.03 | 1.05 | | | | | Heavy Industry | 0.82 | 1.04 | 0.98 | 1.00 | | | | | Services | 0.83 | 0.83 | 0.93 | 0.83 | | | | | | China to F | Foreign (Ex) | Foreign to China (Im) | | | | | | | 2002 to 2007 | 2007 to 2015 | 2002 to 2007 | 2007 to 2015 | | | | | Aggregate | 0.73 | 0.77 | 1.00 | 1.16 | | | | | Agricultural | 0.74 | 0.64 | 1.04 | 1.56 | | | | | Light Industry | 0.74 | 0.74 | 1.14 | 1.34 | | | | | Heavy Industry | 0.70 | 0.89 | 0.98 | 1.12 | | | | | Services | 0.77 | 0.58 | 0.99 | 1.18 | | | | - 2002-2007: For China, both Intranational trade cost and international trade cost decrease - ullet 2007-2015: Trade cost not change to much except the international trade cost. #### Calibration Efficiency Note: The scatter plots have actual data on the x axis and model-generated value on the y axis with the 45 degree line on the diagonal. Figure: Calibration Efficiency Baseline Model and Data Table: Model fit | China Trade | | | Model | | | | | | |--------------|------|--------|------------------------|--------------------------|--|--|--|--| | Share of GDP | | Data | Balanced trade | Exogenous trade deficits | | | | | | | | Data | Baseline 1 | Baseline 2 | | | | | | Import (% | 2002 | 19.68% | $\boldsymbol{22.09\%}$ | 19.43% | | | | | | of GDP) | 2007 | 25.78% | 29.86 % | 24.58 % | | | | | | | 2015 | 17.41% | $\boldsymbol{19.59\%}$ | 18.08% | | | | | | Export (% | 2002 | 23.46% | - | 23.19% | | | | | | GDP) | 2007 | 36.39% | - | 35.25% | | | | | | | 2015 | 20.03% | - | $\boldsymbol{20.69\%}$ | | | | | | Internal | 2002 | 26.95% | 23.96% | 26.05% | | | | | | trade (% | 2007 | 46.64% | 45.79% | 45.88% | | | | | | of GDP) | 2015 | 50.53% | 50.96% | 51.79% | | | | | - The model reproduces trade share of GDP relatively well - In the main text, I use **Baseline 1** as baseline and do counterfactual under balanced trade - In the robustness checks, I use Baseline 2 as baseline a do counterfactual with exogenous trade deficit to GDP ratio # IO linkages | Input-Output | $Source\ sector$ | | | | | | | | | | |-----------------------|------------------|-----------|-----------|----------|-----------------|----------|--------|----------|--|--| | linkages | Agricultural | Light | Heavy | Services | Agricultural | Light | Heavy | Services | | | | Destination sector | Average | e cross (| China reg | ions | | - | | | | | | Agricultural | 0.16 | 0.09 | 0.11 | 0.07 | - | - | - | - | | | | Light | 0.20 | 0.30 | 0.10 | 0.11 | - | - | - | - | | | | Heavy | 0.01 | 0.03 | 0.51 | 0.12 | - | - | - | - | | | | Services | 0.02 | 0.05 | 0.22 | 0.21 | - | - | - | - | | | | $Destination\ sector$ | | North | East | | 1 | BeijingT | ianjin | | | | | Agricultural | 0.18 | 0.28 | 0.01 | 0.01 | 0.21 | 0.13 | 0.00 | 0.01 | | | | Light | 0.14 | 0.26 | 0.01 | 0.05 | 0.10 | 0.36 | 0.01 | 0.04 | | | | Heavy | 0.12 | 0.11 | 0.56 | 0.25 | 0.18 | 0.14 | 0.62 | 0.22 | | | | Services | 0.06 | 0.09 | 0.12 | 0.21 | 0.10 | 0.12 | 0.14 | 0.29 | | | | | Λ | orthern | Coastal | | Eastern Coastal | | | | | | | Agricultural | 0.18 | 0.23 | 0.01 | 0.01 | 0.14 | 0.12 | 0.01 | 0.01 | | | | Light | 0.11 | 0.35 | 0.04 | 0.05 | 0.13 | 0.39 | 0.03 | 0.04 | | | | Heavy | 0.14 | 0.11 | 0.59 | 0.24 | 0.13 | 0.16 | 0.63 | 0.24 | | | | Services | 0.04 | 0.08 | 0.11 | 0.20 | 0.07 | 0.10 | 0.11 | 0.25 | | | | | S | outhern | Coastal | | Central | | | | | | | Agricultural | 0.15 | 0.13 | 0.01 | 0.01 | 0.20 | 0.26 | 0.01 | 0.01 | | | | Light | 0.12 | 0.38 | 0.03 | 0.05 | 0.10 | 0.31 | 0.03 | 0.05 | | | | Heavy | 0.10 | 0.14 | 0.62 | 0.19 | 0.10 | 0.09 | 0.53 | 0.23 | | | | Services | 0.07 | 0.10 | 0.13 | 0.24 | 0.05 | 0.09 | 0.14 | 0.22 | | | | | | North | West | | SouthWest | | | | | | | Agricultural | 0.19 | 0.31 | 0.01 | 0.01 | 0.20 | 0.25 | 0.01 | 0.01 | | | | Light | 0.08 | 0.22 | 0.01 | 0.04 | 0.09 | 0.20 | 0.02 | 0.05 | | | | Heavy | 0.12 | 0.08 | 0.49 | 0.25 | 0.09 | 0.11 | 0.54 | 0.26 | | | | Services | 0.07 | 0.09 | 0.13 | 0.21 | 0.04 | 0.10 | 0.15 | 0.22 | | |