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Model Setup

Suppose we observe n = 100 pairs of data (xi, yi), and we are interested in estimating a parameter
vector β ∈ Rk from the nonlinear model:

yi = f(xi, β) + εi,

where f(·, β) is a known nonlinear function and εi is an unobserved error term.
We estimate β via nonlinear least squares (NLS), by solving:

β̂ = argmin
β

n∑
i=1

[yi − f(xi, β)]
2 .

Objective

We want to construct a 95% confidence interval for each element of β using the bootstrap method.

Step-by-Step Procedure

Step 1: Estimate β̂ from the original sample.

• Using the full original dataset {(xi, yi)}ni=1,

• Solve the nonlinear least squares problem to get β̂original.

• This is your baseline estimate.

Step 2: Generate bootstrap samples.

• Repeat the following B times (e.g., B = 1000):

– Randomly draw n observations with replacement from the original dataset.
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– This creates a new bootstrap sample: {(x∗i , y∗i )}ni=1.

– Some observations may be repeated; others may be omitted.

Step 3: Re-estimate β for each bootstrap sample.

• For each bootstrap sample b = 1, . . . , B:

– Solve the same nonlinear least squares problem:

β̂(b) = argmin
β

n∑
i=1

[y∗i − f(x∗i , β)]
2 .

– Store the resulting estimate β̂(b).

• After B iterations, you have B estimates:

β̂(1), β̂(2), . . . , β̂(B).

Step 4: Compute the 95% bootstrap confidence intervals.

• For each parameter component βj :

– Extract the j-th element from each β̂(b), denoted β̂
(b)
j .

– Form the set {β̂(1)
j , . . . , β̂

(B)
j }.

– Sort this set from smallest to largest.

– Compute the 2.5% and 97.5% quantiles.

• The 95% percentile confidence interval for βj is:

CI95%(βj) =
[
β̂
(B·0.025)
j , β̂

(B·0.975)
j

]
• These are the lower and upper bounds such that 95% of the bootstrap estimates fall inside.

Why Use Bootstrap?

• It does not rely on analytical standard errors or asymptotic normality.

• It works well even when the model is nonlinear or the sample is small.

• It directly approximates the sampling distribution of your estimator.

Conclusion

The bootstrap is a powerful and flexible tool for constructing confidence intervals for estimated
parameters. By repeatedly simulating the estimation process using resampled data, we approximate
the uncertainty in our original estimate β̂.
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