Demographics, Trade, and Growth

Yang Pei University of Houston

Fall, 2024

Yang Pei (UH) DTG Fall, 2024 0 / 19

Introduction

Motivation

- In recent decades (70s-20), developing countries that experienced an increase in their working-age population also saw increases in trade and real GDP per capita Detail
 - ▶ Usually specialize in and export labor-intensive goods (Hanson, 2020)
 - ► Examples: China, Vietnam, Philippines and more
- However, in recent years, as the working-age pop. such as China and many other countries has declined, growth also slowed down
 - ▶ All else being equal, this encourages a shift in comparative advantage to capital-intensive goods

Research Question: How much does demographic structure influence changes in trade patterns and economic growth?

> ◆ロト ◆団ト ◆豆ト ◆豆ト 亳1年 夕久で DTG

Introduction

Research Question: How much does demographic structure influence changes in trade patterns and economic growth?

Potential mechanisms

- Productivity (Age-varying ability in generating new ideas)
- Capital accumulation (Age-varying saving behavior)
- Trade determined by comparative advantage (CA) reallocates the production across countries and sectors
 - ▶ Ricardian CA: Difference in Productivity
 - \blacktriangleright Hecksher-Ohlin CA: Differences in K/L ratio

<□▶ <@▶ < 분▶ < 분▶ 원 = 1 = 1 의 < ()

Yang Pei (UH) DTG Fall, 2024 2 / 19

Job Market Research

- Empirical evidence Detail
 - ▶ Panel regression: higher working age share is related to higher
 - **★** Productivity growth
 - **★** Investment share of GDP, and growth rate of K/L ratio
 - ▶ Panel regression: lower trade cost is related to higher growth rate of K/L ratio
 - ▶ VARX model: The hump shape for IRF of +1% young people share shock on
 - \star Productivity growth, and growth rate real capital stock per person
- Develop and calibrate a dynamic OLG trade model features
 - ▶ Demographic-induced productivity change
 - ▶ Demographic-induced capital accumulation
 - ▶ Trade based on Ricardian and Heckscher-Ohlin CA
- Implementation: China's development over 1981-2020, and do model-based projection for 2021-2060. Detail

→□▶ →□▶ → □▶ → □▶ □□ めの○

Today's focus

Introduce the Model

- The demographic structure can influence
 - ► The knowledge stock (productivity)
 - ► The capital stock
- Trade based on Ricardian and Heckscher-Ohlin CA

Numerical experiments

- Close economy
 - ► Compares two steady states
 - \star Exogenous variable: age-varying survival rates and fertility rates
 - ► Examines the transition dynamics

Yang Pei (UH) DTG Fall, 2024 4 / 19

Model Overview

Overview

• Multi-country, multi-sector OLG model with Eaton-Kortum type trade

- Demographic structure influence
 - ► Productivity change
 - ▶ Capital accumulation

- Trade determined by comparative advantage regulates the allocation of production and changes trade patterns
 - ► Ricardian comparative advantage
 - ► Heckscher-Ohlin comparative advantage

Yang Pei (UH) DTG Fall, 2024 5 / 19

Production: production function

$$y_{n,t}^{j}\left(\omega\right) \equiv z_{n,t}^{j}\left(\omega\right) \left[N_{n,t}^{j}\left(\omega\right)^{\beta_{n}^{j}} K_{n,t}^{j}\left(\omega\right)^{1-\beta_{n}^{j}} \right]^{\gamma_{n}^{j}} \prod_{k=1}^{J} m_{n,t}^{k,j}\left(\omega\right)^{\gamma_{n}^{k,j}} \tag{1}$$

- Intermediate good $\omega \in [0,1]$ from country n sector j: $y_{n,t}^j(\omega)$ are produced by labor, capital, and sectoral composite intermediate good
- • Variety-specific productivity $z_{n,t}^j\left(\omega\right)$ drawn from Fréchet $F_{n,t}^j\left(z\right)=\exp(-\lambda_{n,t}^jz^{-\theta})$
 - \bullet d controls the variance of productivity distribution
 - $\blacktriangleright \ \lambda_{n,t}^j$ controls the mean of productivity for country n, sector j, at time t
 - ★ a.k.a knowledge stock

→□▶→□▶→■▶→■□ から○

Yang Pei (UH) DTG Fall, 2024 6 / 19

Production: Knowledge stock dynamics (1/2)

(omit sector j and country n subscript for simplify)

• The mean of ideas arrived per period, α_t , determines technology stock (λ_t) dynamics (Oberfield and Buera, 2019):

$$\lambda_{t+1} - \lambda_t = \Gamma(1 - \rho)\alpha_t(\lambda_t)^{\rho} \tag{2}$$

• New assumption: the age-dependent ability to generate new ideas

$$\lambda_{t+1} - \lambda_t = \Gamma (1 - \rho) \left(\sum_g \eta_g \bar{N}_{g,t} \right)^{\varphi} N^{\varphi} (\lambda_t)^{\rho}; \quad \alpha_t \equiv \left(\sum_g \eta_g N_{g,t} \right)^{\varphi}$$
 (3)

- \triangleright η_g : mean of ideas arrived per age g people per period
- ▶ $N_{g,t}, \bar{N}_{g,t}$: number and share of age g people at time t
- $\varphi < 1$: reflect some crowding effects, or duplication of idea
- $\rho \in (0,1)$: capture the effects of existing knowledge stock
- $\left\{\sum_g \eta_g N_{g,t}\right\}^{\varphi}$: total number of efficient idea per unit of time

 Yang Pei (UH)
 DTG
 Fall, 2024
 7/19

Production: Knowledge stock dynamics (2/2)

• Technology stock (λ_t) dynamics:

$$\frac{\lambda_{t+1} - \lambda_t}{\lambda_t} = \Gamma \left(1 - \rho \right) \left(\sum_g \eta_g \bar{N}_{g,t} \right)^{\varphi} N^{\varphi} \left(\lambda_t \right)^{\rho - 1} \tag{4}$$

- At steady state, given population growth at rate $1+g_n$, knowledge stock growth at $(1+g_n)^{\frac{\varphi}{1-\rho}}$
- W/o demographic effects, isomorphic to Semi-endogenous growth framework (Chad Jones, 2022)

$$\frac{A_{t+1} - A_t}{A_t} = cN_t^{\varphi} A_t^{\rho - 1}; \quad \rho < 1$$
 (5)

- ▶ A_t : level of productivity; counterpart in my model is $\lambda_t^{1/\theta}$: mean parameter of productivity for varieties $\omega \in [0,1]$
 - \star θ controls the variance of the productivity distribution
- $A_t \sim \lambda_t^{1/\theta}$ implies $\Delta \log A_t \sim 1/\theta \Delta \log \lambda_t$

Households (1/2)

(Omit country subscripts for simplicity)

- Households work at age 16, retired at age 65 and die at age G = 100
- During the working age, households own 1 unit of labor endowment
- There exogenous variable governing the demographic process
 - ▶ The initial number of population across ages: N_{g,t_0}
 - ▶ The fertility rate of age g households at time t: $f_{g,t}$
 - ▶ The probability of surviving to age g at time t: $S_{g,t}$
- The age g households that was born in period t choose lifetime consumption $\{c_{g,t+g-1}\}_{g=1}^G$ and savings $\{a_{g+1,t+g}\}_{g=1}^{G-1}$ to maximize expected lifetime utility

$$\sum_{g=1}^{G} \beta^{g-1} \psi_{n,t+g-1} S_{g,t+g-1} u\left(c_{g,t+g-1}\right)$$

- $u(c) = (c^{1-1/\sigma})/(1-1/\sigma)$
- \blacktriangleright ψ_t saving frictions, capture other forces impact on saving behavior

◆ロト ◆団ト ◆豆ト ◆豆ト 恵1= からぐ

Yang Pei (UH) DTG Fall, 2024 9 / 19

Households (2/2)

The budget constraint for households at age $g \in [1, G]$, time t is

$$P_{C,t}c_{g,t} + P_{I,t}a_{g+1,t+1} = P_{I,t}(1+r_t)a_{g,t} + W_t(1-\tau_t^L)E_tl_g + ts_t^D + ts_t^T$$

$$\forall t: a_{1,t} = a_{G+1,t} = 0$$

- $P_{C,t}$ and $P_{I,t}$: price level for consumption or investment
- W_t and R_t : wage and rental rate
- Households save or borrow in the quantity of $a_{n,g+1,t+1}$ under interest rate \triangleright Detail

$$r_{t+1} = \frac{R_{t+1}}{P_{I,t+1}} - \delta$$

- Household at age g own labor endowment $l_g = 1, \forall g \in [16, 65]$
- labor supply is adjusted for labor supply frictions τ_t^L and human capital index $E_{n,t}$
- Transfers are equally distributed across the households
 - ▶ ts_t^D is the trade deficit induced transfer (Caliendo et.al, 2018) ▶ Detail
 - \triangleright ts_t^T accidental death induced transfer: saving left by households who die before age $G \triangleright \text{Detail}$

Yang Pei (UH) DTG Fall, 2024 10 / 19

Trade

(I omit time t subscript to simplify notation)

- "Iceberg" trade costs: $\kappa_{ni}^j \geq 1$ for country n by sector j goods from country i
- Following Eaton and Kortum (2002), the fraction of country n's expenditures in sector j goods source from country i is:

$$\pi_{ni}^{j} = \frac{\lambda_{i}^{j} \left(c_{i}^{j} \kappa_{ni}^{j} \right)^{-\theta}}{\sum_{i=1}^{N} \lambda_{i}^{j} \left(c_{i}^{j} \kappa_{ni}^{j} \right)^{-\theta}}$$
 (6)

 $ightharpoonup c_n^j$ is the unit price of an input bundle in country n sector j

$$c_n^j \equiv \Upsilon_n^j \left[(W_n)^{\beta_n^j} (R_n)^{1-\beta_n^j} \right]^{\gamma_n^j} \prod_{k=1}^J P_n^{k \gamma_n^{k,j}}$$
 (7)

 \star P_n^j is the price of sectoral composite goods from country n sector j

→ Detail

◆ロト 4周ト 4 三ト 4 三ト 三 三 り Q ○

Yang Pei (UH) DTG Fall, 2024 11/19

Numerical experiments

- Close economy
 - ▶ Exogenous variable: age-varying survival rates and fertility rates

- ► Compares several steady-state pairs
 - \star High fertility rate v.s. low
 - ★ Low survival rate v.s. high

- ► Examines the transition dynamics
 - \star Population growth slows down: from high fertility rate to low
 - ★ People live longer: from low survival rate to high

Yang Pei (UH) DTG Fall, 2024 12 / 19

Steady State

Exogenous variables

Figure: Exogenous variables

Compare Steady State

	Case control	Case 1	Case 2
Survival rate	low	high	low
Fertility rate	high	high	low
Average lifespan	60	70.79	60
Population growth	1.05	1.05	1.01
Implied TFP growth	1.0165	1.0165	1.0033
labor share	0.4338	0.4412	0.6394
Per efficient person			
Capital stock	1.1672	1.3516	2.5128
Output	0.6034	0.6408	1.009
Consumption	0.4446	0.4569	0.8204
Investment	0.1588	0.1839	0.1886
capital - efficient labor ratio	2.6906	3.0635	3.93
Price ratio			
Real wage rate	0.9272	0.9682	1.0521
Real rental rate	0.1723	0.158	0.1339

- Case 1 v.s. Control: A higher average lifespan increases savings, which, acting as a supply of capital, leads to higher capital per efficient person
- Case 2 v.s. Control: With slower population and TFP growth, the number of effective persons grows more slowly. Less capital used to be spread across individuals, leads to higher capital per efficient person

◆□▶ ◆□▶ ◆■▶ ◆■■ りへで

Yang Pei (UH) DTG Fall, 2024 14 / 19

Transitional dynamics: Population changes over time Indiana Control of the Indiana Control

Shock at Time 1: Survival Rate or Fertility Rate shocks lead economy moving from S.S.0 to S.S.1

Transitional dynamics: knowledge stock, λ_t

$$\frac{\lambda_{t+1} - \lambda_t}{\lambda_t} = (\lambda_t)^{\rho - 1} \left\{ \sum_g \eta_g N_{g,t} \right\}^{\varphi} \Gamma (1 - \rho)$$

Simple application

- $\eta_g = c > 0$ if $g \in (16,65)$ and $\eta_g = 0$ if $g \notin (16,65)$
- Given $\lambda_{t_0} = 1$, if the technology process is on the balance growth path at $t = t_0$, one can calculate c from

$$1 + g_{\lambda,t+1} = 1 + g_{\lambda} = N_t^{\varphi} (\lambda_t)^{\rho - 1} \left\{ \sum_g \eta_g \bar{N}_{g,t} \right\}^{\varphi} \Gamma (1 - \rho), \quad t = t_0$$

Implication

- ullet In the short run, an increase in the level of working-age population leads to higher TFP growth.
- At steady state, given population growth at rate $1+g_n$, knowledge stock growth at $(1+g_n)^{\frac{\varphi}{1-\rho}}$

 Yang Pei (UH)
 DTG
 Fall, 2024
 16 / 19

Transitional dynamics: Knowledge stock changes over time

TS2: Population growth slow down - from high fertility rate to low

Yang Pei (UH) DTG Fall, 2024 17/19

Transitional dynamics: TS1 - living longer

Transitional dynamics: TS2 - population growth slow down

Thank You

Yang Pei (UH) DTG Fall, 2024 19 / 19

Transitional dynamics • Back

Figure: Live longer

イロト イ部ト イミト イミト

Transitional dynamics • Back

Figure: Growth slow down

Aggregation Back

Capital

$$\sum_{j=1}^{J} \int_{0}^{1} k_{n,t}^{j}(\omega) d\omega = K_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g-1,t-1} a_{n,g,t}$$
 (8)

Labor

$$\sum_{j=1}^{J} \int_{0}^{1} l_{n,t}^{j}(\omega) d\omega = N_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g,t} l_{g}$$
 (9)

Consumption

$$C_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g,t} c_{n,g,t}$$
 (10)

Investment

$$I_{n,t} \equiv K_{n,t+1} - (1 - \delta) K_{n,t} \tag{11}$$

Yang Pei (UH)

DTG

Fall, 2024

19 / 19

Model Equilibrium ▶ Back

The model economy is summarized by time invariant parameters $(\beta_n^j, \gamma_n^{j,k}, \gamma_n^j, \alpha_{C,n}^j, \alpha_{I,n}^j, \delta,)$, time varing process of demographics process $\eta_{n,g,t}$, sectoral productivities λ_n^j , sectoral trade costs κ_{ni}^j , the initial capital and capital distribution: K_{n,t_0} and a_{n,g,t_0} , trade imbalances $\phi_{n,t}$ and discount factors $\phi_{n,t}$.

Definition

A competitive equilibrium of this model consists sequences of allocations $\forall g \in [E+1, E+G]$: $(a_{n,g,t}, c_{n,g,t}, C_{n,t}, K_{n,t}, I_{n,t}, \pi^j_{ni,t})$ and prices $(P^j_{n,t}, R_{n,t}, W_{n,t})$ that satisfy the following conditions:

- The households taking prices transfer and deficit as given, optimize lifetime utility.
- Firms taking prices as given, minimize production cost.
- Each country purchases each variety from the least costly supplier/country.
- All markets are clear

(ロト 4*団* > 4 분 > 4 분 > 분/달 쓋익()

19 / 19

Yang Pei (UH) DTG Fall, 2024

Numerical experiments: Compare Steady State

Effect of Age structure and trade

Table: Compare steady state

	Baseline Case		Case 1			
Autarky	cty 1	cty 2	cty 1	cty 2		
Aggregate Capital	14.20	14.20	15.94	14.20		
Real income per person	0.39	0.39	0.40	0.39		
	Baseline Case		Case 1			
Free Trade	cty 1	cty 2	cty 1	cty 2		
Aggregate Capital	34.08	34.08	43.91	40.93		
Real income per person	0.66	0.66	0.73	0.71		
Balassa (1965) CA index Definition						
Sector 1 (capital-intensive)	1.0	1.0	1.012	0.988		
Sector 2 (labor-intensive)	1.0	1.0	0.988	1.012		

Under Autarky, Case 1 v.s. Baseline:

• Country 1 has more population ages 40-65, thus it has more aggregate capital supply in steady state

Under Free Trade, Case 1 v.s. Baseline:

- Country 1, sector 1 gain CA in the capital-intensive sector
- Trade amplifies welfare gains

Balassa (1965) Revealed comparative advantage (RCA) index

$$RCA_{nj} = \frac{\sum_{n} \frac{Export_{n,j}}{\sum_{n} Export_{n,j}}}{\sum_{j} Export_{n,j}}$$

$$\sum_{j,n} Export_{n,j}}$$
(12)

where n means country, j means sector, $Export_{n,j}$ means the value of country n's sector j exports.

• The higher RCA_{nj} , the higher degree of specialization for country n in sector j products.

▶ Back

◄□▶◀률▶◀불▶◀불▶ 불章 쒸요○

Yang Pei (UH) DTG Fall, 2024 20 / 19

Empirical

Data source

The United Nations Statistics Division (UNSD)

 Age cohorts share for every 5 years, Dependence ratio, Old dependence ratio, Young dependence ratio, Total population

Penn World Table (PWT 10.01)

- Average annual hours worked by persons engaged, Number of persons engaged, Mean years of schooling, Capital stock, Real GDP, Average depreciation rate of the capital stock
- TFP calculated by PWT based on above variables

CEPII

• Imports and Exports between two countries

World Development Indicators (WDI)

• Share of household consumption, capital formation, government consumption (% share of GDP), residents new patents application, residents new industrial design application

Yang Pei (UH) DTG Fall, 2024 19/19

◆□▶ ◆周▶ ◆三▶ ◆三▶ ●□ め@@

Panel Regression

Effect of Demographic structure on TFP growth

▶ Back

$$GRTFP_{it,t+4} = Constant + \alpha_1 Demographic_{it} + \alpha_2 Controls_{it} + f_i + f_t + \varepsilon_{it}$$
(13)

- 74 countries. I divide the entire period of 1970–2019 into 10 non-overlapping 5 year periods: period 1 (1970–1974), period 2 (1975–1979), period 3 (1980–1984), period 4 (1985–1989), period 5 (1990–1994),... and period 10 (2015–2019)
- \bullet *i* means country; *t* means year
- Dependent variables, $GRTFP_{it,t+4}$: Investment K/L Ratio
 - ▶ Average TFP growth rate during the period t to t + 4
 - \blacktriangleright Average number of new patents applications during the period t to t+4
 - \blacktriangleright Average number of new industrial design applications during the period t to t+4
- $Demographic_t$: Working age share [15-64/total] (%); Share of people at different age intervals (%)
- Controls: Initial log real GDP per capita; f_i and f_t : fixed effects

 Yang Pei (UH)
 DTG
 Fall, 2024
 19 / 19

Panel VARX model

Capital accumulation, TFP, and economic growth

VARX model:

$$Y_{n,t} = C + AY_{n,t-1} + BX_{n,t} + \varepsilon_{n,t}$$

Endogenous variables:

$$Y_{nt} = \begin{bmatrix} the \ 5 \ year \ growth \ rate \ of \ capital \ per \ person \ (\%) \\ the \ 5 \ year \ growth \ rate \ of \ TFP \ (\%) \\ the \ 5 \ year \ growth \ rate \ of \ the \ real \ GDP \ per \ capita \ (\%) \end{bmatrix}_{Country \ n, time \ the \ the$$

Exogenous variables: Demographic Structure (age shares):

$$X_{nt} = \begin{bmatrix} young \ people \ share \ (\%), \ (0-14) \\ old \ people \ share \ (\%), \ (65+) \\ trade \ cost \ change \ (\%) \\ the \ 5 \ year \ growth \ rate \ of \ population(\%) \end{bmatrix}_{Country \ n, time \ t}$$

Time interval: 1 unit of time = 5 years. e.g. t = 1 means first 5 years \bigcirc Back

Yang Pei (UH) DTG Fall, 2024 19/19

Panel Regression Results

VARIABLES	Average va TFP growth rate	Patent.Applications (per 1000 people)	Industrial.Design.Applications (per 1000 people)
(0-24)/ToT.	26.22***	-1.56***	-0.55***
()//	(4.24)	(-7.06)	(-3.87)
(25-49)/ToT.	34.48***	0.18	0.71***
77	(4.28)	(0.46)	(2.87)
(50-74)/ToT.	43.60***	4.90***	1.08***
77	(4.41)	(7.40)	(2.93)
(75+)/ToT.	13.47	-2.59	-1.85**
· //	(0.90)	(-1.59)	(-1.99)
Initial.Log.Dependent	-3.51***		,
· .	(-4.49)		
Observations	732	395	215
R-squared	0.263	0.880	0.939
Time FE	YES	YES	YES
Country FE	YES	YES	YES

◀ Hump shape for the coefficients

▶ Back

Yang Pei (UH) DTG Fall, 2024 19 / 19

Panel VARX model

IRF of exogenous shock on I.TFP growth; II. Growth rate of real capital stock per person

The IRF of +1% young people share shock is hump shape

▶ Back

Empirical

Summary

Panel regression

- TFP growth
 - ▶ Hump shape for the relation of age and TFP growth
 - $\star\,$ same for new patents application or new industry design application

VARX

- The IRF of +1% young people share shock is hump shape
 - ► Shock will pass down as people grow up

Yang Pei (UH) DTG Fall, 2024 19 / 19

Panel Regression

Effect of Demographic structure on investment and consumption

$$Ave.Y_{it,t+4} = Constant + \beta_1 Demographic_{it} + f_i + f_t + \varepsilon_{it}$$
(14)

- Y: Investment, or consumption share of GDP
- $Ave.Y_{it,t+4}$: Average investment, or consumption share of GDP during the period t to t+4:

$$Ave.Y_{it,t+4} = \sum_{s=t+0}^{t+4} \frac{Y_{i,s}}{5}$$

∢ Back

→ □ ▷ → □ ▷ → 토 ▷ → 토 □ ▷ ○ ○

Yang Pei (UH) DTG Fall, 2024 19 / 19

Panel Regression

Effects of demographic structure and trade cost change on capital/labor ratio

$$GR.K/L_{it,t+4} = Constant + \beta_1 Demographic_{it} + \beta_2 TradeCost_{it} + \beta_3 Control_{it} + f_i + f_t + \varepsilon_{it}$$
 (15)

• $GR.K/L_{it,t+4}$: Average capital per person (k) growth rate (%) for country i during the period t to t+4:

$$GR.K/L_{it,t+4} = \left[\frac{k_{i,s+4}}{k_{i,s}}\right]^{\frac{1}{4}} - 1$$

• $TradeCost_{it}$: The trade cost for country i at time t, which is constructed as the Head-Ries (HR) index (Head and Mayer, 2004):

$$TradeCost_{it} = (\frac{\pi_{i,row}}{\pi_{row,row}} \frac{\pi_{row,i}}{\pi_{ii}})^{-\frac{1}{2\theta}}$$

◆ Back

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 至 | = り へ ○

Panel Regression Results • Robust: every non-overlapping 8 years

Average value in the future 4 years						
VARIABLES	Cap.Formation(% GDP)	Gross.Consumption(% GDP)	K/L growth rate			
(0-24)/ToT.	16.69***	92.44***	24.08***			
	(2.64)	(14.84)	(4.50)			
(25-49)/ToT.	29.11***	60.55***	39.21***			
	(4.14)	(5.58)	(5.36)			
(50-74)/ToT.	37.83**	59.95***	19.18			
. , , ,	(2.05)	(3.23)	(1.66)			
(75+)/ToT.	-124.60***	150.74***	4.22			
, , , ,	(-2.77)	(3.21)	(0.24)			
Trade Cost			-0.83**			
			(-2.11)			
Initial.Log.Dependent			-1.98***			
			(-3.21)			
PoP.Growth			-35.31**			
			(-2.08)			
Observations	724	725	758			
R-squared	0.972	0.996	0.787			
Time FE	YES	YES	YES			
Country FE	YES	YES	YES			

∢ Back

◆ロト ◆個ト ◆差ト ◆差ト 差目 からぐ

Yang Pei (UH) DTG Fall, 2024 19/19

Population of young, working-age and elderly, South Korea Historic estimates from 1950 to 2021, and projected to 2100 based on the UN medium-fertility scenario'.

Source: United Nations, World Population Prospects (2022)

OurWorldInData.org/age-structure • CC BY

- ◆ □ ▶ ◆ @ ▶ ◆ 분 ▶ · 분 | 글 | 달 · 의 익 ()

^{1.} UN projection scenarios: The UN's World Population Prospects provides a range of projected scenarios of population change. These rely on different assumptions in fertility, mortality and/or migration patterns to explore different demographic futures. PRead more: Definition of Projection Scenarios (UN)

Population of young, working-age and elderly, Japan

Historic estimates from 1950 to 2021, and projected to 2100 based on the UN medium-fertility scenario¹.

Source: United Nations, World Population Prospects (2022)

OurWorldInData.org/age-structure • CC BY

19 / 19

^{1.} UN projection scenarios: The UN's World Population Prospects provides a range of projected scenarios of population change. These rely on different assumptions in fertility, mortality and/or migration patterns to explore different demographic futures. PRead more: Definition of Projection Scenarios (UN)

Population of young, working-age and elderly, Vietnam Our World in Data Historic estimates from 1950 to 2021, and projected to 2100 based on the UN medium-fertility scenario1. 70 million 60 million Working age (15-64 years) 50 million 40 million 30 million Elderly (65+ years) 20 million Young (under-15s) 10 million 1950 1980 2000 2020 2040 2060 2080 2100

Source: United Nations, World Population Prospects (2022)

OurWorldInData.org/age-structure • CC BY

^{1.} UN projection scenarios: The UN's World Population Prospects provides a range of projected scenarios of population change. These rely on different assumptions in fertility, mortality and/or migration patterns to explore different demographic futures. Read more: Definition of Projection Scenarios (UN)

Population of young, working-age and elderly, Laos

 $Historic\ estimates\ from\ 1950\ to\ 2021,\ and\ projected\ to\ 2100\ based\ on\ the\ UN\ medium-fertility\ scenario^1\ .$

Source: United Nations, World Population Prospects (2022)

OurWorldInData.org/age-structure • CC BY

^{1.} UN projection scenarios: The UN's World Population Prospects provides a range of projected scenarios of population change. These rely on different assumptions in fertility, mortality and/or migration patterns to explore different demographic futures. Read more: Definition of Projection Scenarios (UN)

Population of young, working-age and elderly, Philippines

^{1.} UN projection scenarios: The UN's World Population Prospects provides a range of projected scenarios of population change. These rely on different assumptions in fertility, mortality and/or migration patterns to explore different demographic futures. Read more: Definition of Projection Scenarios (UN)

Population of young, working-age and elderly, United States

Historic estimates from 1950 to 2021, and projected to 2100 based on the UN medium-fertility scenario1.

Source: United Nations, World Population Prospects (2022)

OurWorldInData.org/age-structure • CC BY

^{1.} UN projection scenarios: The UN's World Population Prospects provides a range of projected scenarios of population change. These rely on different assumptions in fertility, mortality and/or migration patterns to explore different demographic futures.

Population of young, working-age and elderly, China

Historic estimates from 1950 to 2021, and projected to 2100 based on the UN medium-fertility scenario¹ .

Source: United Nations, World Population Prospects (2022)

OurWorldInData.org/age-structure • CC BY

- (ロ) (個) (量) (量) (単) (QC)

^{1.} UN projection scenarios: The UN's World Population Prospects provides a range of projected scenarios of population change. These rely on different assumptions in fertility, mortality and/or migration patterns to explore different demographic futures. Read more: Definition of Projection Scenarios (UN)

▶ Detail Back

Capital-Specialization Index

$$Capital - Specialization \ Index_{n,t} \ = \sum_{j=1}^{J} \frac{Export_{n,t}^{j}}{\sum_{j=1}^{J} Export_{n,t}^{j}} \cdot CI^{j}$$

- CI^{j} : capital intensive index of sector j
 - $CI^{j} = 1$ means sector j is capital intensive sector
 - $CI^{j} = 0$ means sector j is not capital intensive sector
- A sector is capital intensive sector if
 - ► Capital valued added share > mean (across all sector) of capital valued added shares
- $Export_n^j$: Total exports of country n for sector j goods

∢ Back

→ロト→個ト→重ト→重ト 重日 のQで

Facts of China

Growth slow down, and Old before rich:

- Real GDP per capita growth trended down since 2008
- Working-age share trended down since 2010
- At 2021
 - ▶ Median age CHN v.s. USA: 37.9 v.s 37.7
 - ▶ Real GDP per capita: CHN is 28% of USA

Past: Large and growing working-age share & openness to trade

- Low level of wages, specialize in labor-intensive goods
- Demographic-induced TFP growth
- Growing capital accumulation from working age people

Question: How do demographics affect trade and growth of China in the past and future?

Demographics and TFP

Table 2: The effect of demographic structure on technology change

VARIABLES	Average TFP growth rate in the future 7 years									
Initial.ln.RGDP.p.c	-2.78***	-0.17**	-1.96***	-2.93***	-0.18***	-2.19***				
	(-4.32)	(-2.53)	(-4.66)	(-4.55)	(-2.64)	(-4.92)				
Dep.Ratio [0-14, 65+]/[15-64]	-2.11*	-2.58***	-5.32***							
	(-1.88)	(-3.90)	(-4.89)							
Work. Share $[15-64]/\text{ToT}$				8.31***	7.61***	17.12***				
				(2.76)	(4.20)	(5.50)				
Constant	25.75***	3.48***	20.85***	20.69***	-2.80***	9.08***				
	(4.44)	(3.37)	(4.83)	(3.53)	(-3.91)	(2.88)				
Observations	439	439	439	439	439	439				
R-squared	0.361	0.090	0.271	0.367	0.091	0.280				
Time FE	YES	YES	NO	YES	YES	NO				
Country FE	YES	NO	YES	YES	NO	YES				

Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1

- ◀ □ ▶ ◀♬ ▶ ◀ 툴 ▶ 호 | 트 | 1 의 및 C |

Demographics and TFP

Table 4: The effect of demographic structure on technology change

VARIABLES	Average TFP growth rate in the future 7 years										
Initial.ln.RGDP.p.c	-2.86***	-2.63***	-2.92***	-3.11***	-2.66***	-3.10***					
	(-4.37)	(-3.80)	(-4.17)	(-4.49)	(-3.71)	(-4.28)					
Child.Dep.R [0-14]/[15-64]	-2.58**		-2.70**								
	(-2.05)		(-2.08)								
Old.Dep.R [65+]/[15-64]		0.93	2.45								
		(0.22)	(0.55)								
Child.Share[0-14]/ToT				-9.31***		-9.41***					
				(-2.72)		(-2.80)					
Old.Share $[65+]/ToT$					3.06	-1.02					
					(0.41)	(-0.14)					
Constant	26.51***	22.79***	26.77***	30.40***	22.96***	30.42***					
	(4.42)	(3.80)	(4.30)	(4.53)	(3.73)	(4.56)					
Observations	439	439	439	439	439	439					
R-squared	0.363	0.355	0.364	0.370	0.355	0.370					
Time FE	YES	YES	YES	YES	YES	YES					
Country FE	YES	YES	YES	YES	YES	YES					

Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Demographics and TFP

Table 7: The effect of demographic structure on Investment, Saving and Consumption

	Average value (% GDP) in the future 7 years								
VARIABLES	Dom.Saving	Cap.Formation	Fix.Cap.Formation	Consumption					
Dep.Ratio [0-14, 65+]/[15-64]	-7.63	-9.79*	-9.80*	7.63					
	(-1.26)	(-1.91)	(-1.94)	(1.26)					
Constant	26.65***	28.48***	27.36***	73.35***					
	(6.18)	(7.44)	(7.33)	(17.00)					
Observations	432	431	427	432					
R-squared	0.792	0.627	0.587	0.792					
Time FE	YES	YES	YES	YES					
Country FE	YES	YES	YES	YES					

Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1

◀ Back

Financial Market

The financial market works with zero frictions

- Receive deposits of $\sum a_{g,t} N_{g,t}$ from individuals
 - Repay those individuals an amount $(1 + r_t) \sum a_{g,t} N_{g,t}$
- Loaned an amount $K_t = \sum a_{g,t} N_{g,t}$ to firms to use in production
 - Receives an amount $(1 + R_t \delta) K_t$ from firms
- Market clear implies

$$r_t = R_t - \delta \tag{16}$$

Trade deficit-induced transfers

- A pre-determined share of GDP, $\phi_{n,t}$ is sent to a global portfolio, which in turn disperses a per-capita lump-sum transfer, T_t^P , to every country
- The net transfer, also recognized as trade deficit, are calculated as:

$$D_{n,t} = -\phi_{n,t} \left(R_{n,t} K_{n,t} + W_{n,t} E_{n,t} N_{n,t} \right) + \bar{L}_{n,t} T_t^P$$
(17)

• Dividing by the total economically relevant population $\bar{L}_{n,t}$ implies that total bequests are equally distributed across the population

$$D_{n,t} = -\phi_{n,t} \left(R_{n,t} K_{n,t} + W_{n,t} E_{n,t} N_{n,t} \right) + \frac{\bar{L}_{n,t}}{\sum_{n=1}^{N} \bar{L}_{n,t}} \sum_{n=1}^{N} \phi_{n,t} \left(R_{n,t} K_{n,t} + W_{n,t} E_{n,t} N_{n,t} \right)$$
(18)

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 夏 ha - 夕 Q (*)

Demographics-induced transfers

• $TRSV_{n,t}$ is defined as demographic structure change-induced transfer which is due to the number of population changes between cohort (s-1,t-1) and (s,t)

$$TRSV_{n,t} = P_{n,I,t} (1 + r_{n,t}) \sum_{g=E+2}^{E+S} (\eta_{n,g-1,t-1} - \eta_{n,g,t}) a_{n,g,t}$$
 (19)

- ► The number of population change can either counted as net death $(\eta_{n,q-1,t-1} \eta_{n,q,t} > 0)$ or net immigrant $(\eta_{n,q-1,t-1} \eta_{n,q,t} < 0)$
- ▶ The asset change due to net death is treated as positive bequests
- ▶ The net immigrant (g,t) enter country n with zero assets, and is treated as negative bequests

→ Back

→ロト→個ト→重ト→重ト 重日 のQで

Steady State

Definition 1 (Steady-state equilibrium): A steady-state equilibrium in the perfect foresight overlapping generations trade model is defined as constant allocations of stationary consumption, saving and prices: $\left\{ \{\bar{c}_{n,g}\}_{g=E+1,\ n=1}^{E+G,\ N},\ \{\bar{b}_{n,g+1}\}_{g=E+1,\ n=1}^{E+G-1,N},\ \{\bar{W}_n,\ \bar{R}_n\}_{n=1}^N \right\}$, such that:

- The households taking prices, transfer as given, optimize lifetime utility
- Firms taking prices as given, minimize production cost
- Each country purchases each variety from the least costly supplier/country
- The population distribution is not changed with time and defined as stationary steady-state distribution $\left\{\eta\star_{n,q}\right\}_{q=1}^{E+G}$
- The growth rate of sectoral TFP in the steady state is assumed as zero, which implies that the demographic induced growth $g\left(\vec{\eta}_{n,t};\vec{\alpha}_{n,t}^{j}\right)$ will be balanced out by orthogonal shocks $\vartheta_{n,t}^{j}$
- All markets are clear

Transitional Dynamics

Definition 2 (The transitional dynamics equilibrium): The transitional dynamics equilibrium in the perfect foresight overlapping generations trade model with exogenous population dynamics is defined as sequences of allocations $\{c_{n,g,t}\}_{g=E+1,\ n=1}^{E+G,\ N}$, $\{b_{n,g+1,t+1}\}_{g=E+1,\ n=1}^{E+G-1,N}$ and prices $\{W_{n,t},\ R_{n,t}\}_{n=1}^{N}$ such that:

- The households taking prices, and transfer as given, optimize lifetime utility
- Firms taking prices as given, minimize production cost
- Each country purchases each variety from the least costly supplier/country
- All markets are clear

▶ Equations

→ Back

Steady State (1/2)

Table: Steady-state conditions (1/2)

$$\begin{array}{|c|c|c|c|c|}\hline H1 & L_n^\star \equiv \sum_{g=1}^{E+G} \eta_{n,g}^\star; \ \bar{L}_n^\star \equiv \sum_{g=E+1}^{E+G} \eta_{n,g}^\star; \ N_n^\star = \left(1-\tau_n^{\star L}\right) \sum_{g=E+1}^{E+G} \eta_{n,g}^\star l_g = \left(1-\tau_n^{\star L}\right) \sum_{g=E+1}^{E+G} \eta_{n,g}^\star l_g & \forall (n) \\ \hline H2 & P_{n,C}^\star c_{n,g}^\star + P_{n,I}^\star b_{n,g+1}^\star = \left(1+\frac{R_{n}^\star}{P_{n,I}^\star} - \delta\right) P_{n,I}^\star b_{n,g}^\star + W_n^\star \left(1-\tau_n^{\star L}\right) E_n^\star l_g + \frac{T_{RSV_n}^\star}{L_n^\star} + \frac{P_n^\star}{L_n^\star} \text{ for } \forall g \geq E+1 & \forall (n) \\ \hline H3 & b_{n,E+1}^\star = b_{n,E+G+1}^\star = 0, \ c_{n,E+g}^\star > 0, \ \left\{c_{n,g}^\star\right\}_{g=E+1}^{E+G}, \left\{b_{n,g+1}^\star\right\}_{g=E+1}^{E+G-1} & \forall (n) \\ \hline H4 & TRS^V_n^\star = \left(\frac{R_{n}^\star}{P_{n,I}^\star}\right) \sum_{g=E+2}^{E+S} \left(\eta_{n,g-1}^\star - \eta_{n,g}^\star\right) b_{n,g}^\star; TRS^D_n^\star = \left(1-\delta\right) \sum_{g=E+2}^{E+S} \left(\eta_{n,g-1}^\star - \eta_{n,g}^\star\right) b_{n,g}^\star & \forall (n) \\ \hline H5 & TRSV_n^\star = P_{n,I}^\star \left(TRS^V_n^\star + TRS^D_n^\star\right) = P_{n,I}^\star \left(1+\frac{R_{n}^\star}{P_{n,I}^\star} - \delta\right) \sum_{g=E+2}^{E+S} \left(\eta_{n,g-1}^\star - \eta_{n,g}^\star\right) b_{n,g}^\star & \forall (n) \\ \hline H6 & \left(\frac{c_{n,g+1}^\star}{c_{n,g}^\star}\right)^{1/\sigma} = \beta \left(\frac{\psi_{n,t+1}^\star}{\psi_{n,t}^\star}\right) \left(1+\frac{R_{n}^\star}{P_{n,e}^\star} - \delta\right) \text{ for } \forall g \in [E+1,E+G-1] & \forall (n) \\ \hline H7 & C_n^\star = \sum_{g=E+1}^{E+G} \eta_{n,g}^\star c_{n,g}^\star; \ I_n^\star = \sum_{g=E+1}^{E+G} \eta_{n,g}^\star i_{n,g}^\star; \ K_n^\star = \sum_{g=E+1}^{E+G} \eta_{n-1,g-1}^\star b_{n,g}^\star & \forall (n) \\ \hline F1 & W_n^\star E_n^\star N_n^\star = \sum_{j=1}^J \beta_n^j \gamma_n^j \sum_{i=1}^N \pi_{in}^\star j_i^\star j_i^\star \\ \hline F2 & R_n^\star K_n^\star = \sum_{j=1}^J \left(1-\beta_n^j\right) \gamma_n^j \sum_{i=1}^{N_{i=1}} \pi_{in}^\star j_i^\star j_i^\star \end{cases} & \forall (n) \\ \hline \end{array}$$

Steady State (2/2)

Table: Steady-state conditions (2/2)

$$\begin{array}{lll} \text{F3} & X_{n}^{\star j} = \alpha_{C,n}^{j} P_{c,n}^{\star} C_{n}^{\star} + \alpha_{J,n}^{j} P_{I,n}^{\star} I_{n}^{\star} + \sum_{k=1}^{J} \gamma_{n}^{j,k} \left(\sum_{i=1}^{N} X_{in}^{\star k} \right) & \forall (n,j) \\ \text{F4} & P_{n}^{\star j} I_{n}^{\star j} = \alpha_{J,n}^{j} P_{I,n}^{\star} I_{n}^{\star} ; P_{n}^{\star j} C_{n}^{\star j} = \alpha_{C,n}^{j} P_{c,n}^{\star} C_{n}^{\star} & \forall (n,j) \\ \text{F5} & IN_{n}^{\star} \equiv R_{n}^{\star} K_{n}^{\star} + W_{n}^{\star} E_{n}^{\star} N_{n}^{\star} + D_{n}^{\star} = P_{C,n}^{\star} C_{n}^{\star} + P_{I,n}^{\star} I_{n}^{\star} & \forall (n) \\ \text{T1} & c_{n}^{\star j} \equiv \Upsilon_{n}^{j} \left[\left(W_{n}^{\star j} \right)^{\beta_{n}^{j}} \left(R_{n}^{\star j} \right)^{1 - \beta_{n}^{j}} \right]^{\gamma_{n}^{j}} \prod_{k=1}^{J} P_{n}^{\star k^{\star k_{n}^{\star j}}} & \text{where } \Upsilon_{n}^{j} \equiv \gamma_{n}^{j} \beta_{n}^{j} \gamma_{n}^{j} \left(1 - \beta_{n}^{j} \right)^{-\gamma_{n}^{j} \left(1 - \beta_{n}^{j} \right)} \prod_{k=1}^{J} \gamma_{n}^{k,j} \gamma_{n}^{\star,j} & \forall (n,j) \\ \text{T2} & P_{n}^{\star j} = A \cdot \left[\sum_{i=1}^{N} \lambda_{i}^{\star j} \left(\kappa_{ni}^{\star j} c_{i}^{\star j} \right)^{-\theta} \right]^{-\frac{1}{\theta}} & \text{where } A \equiv \Gamma \left(\frac{1 + \theta - \sigma}{\theta} \right)^{\frac{1}{(1 - \sigma)}} & \forall (n,j) \\ \text{T3} & \pi_{ni}^{\star j} & \sum_{m=1}^{N} \lambda_{n}^{\star j} \left(c_{n}^{\star j} c_{n,m}^{\star j} \right)^{-\theta} = \lambda_{i}^{\star j} \left(\frac{A^{j} c_{i}^{\star j} c_{n,n}^{\star j}}{P_{n}^{2}^{j}} \right)^{-\theta} & \forall (n,j) \\ \text{T4} & P_{n,c}^{\star} C_{n}^{\star} + P_{n,I}^{\star} I_{n}^{\star} & R_{n}^{\star} K_{n}^{\star} + W_{n}^{\star} E_{n}^{\star} N_{n}^{\star} + D_{n}^{\star} & \forall (n) \\ \text{T5} & K_{n}^{\star} & I_{n}^{\star} \left(1 - \delta \right) K_{n}^{\star} & \forall (n) \\ \text{T6} & \sum_{j=1}^{J} \sum_{i=1}^{L} X_{in}^{\star j} - \sum_{j=1}^{J} \sum_{i=1}^{N} X_{ni}^{\star j} & N_{n}^{\star j} = N X_{n}^{\star} - D_{n}^{\star} & \forall (n) \\ \text{T6} & \sum_{j=1}^{N} \phi_{n}^{\star} \left(R_{n}^{\star} K_{n}^{\star} + W_{n}^{\star} E_{n}^{\star} N_{n}^{\star} + L_{n}^{\star} T^{\star P} & \forall (n) \\ \text{T6} & \sum_{n=1}^{N} \phi_{n}^{\star} \left(R_{n}^{\star} K_{n}^{\star} + W_{n}^{\star} E_{n}^{\star} N_{n}^{\star} + L_{n}^{\star} T^{\star P} & \forall (n) \\ \text{T7} & D_{n}^{\star} = \phi_{n}^{\star} \left(R_{n}^{\star} K_{n}^{\star} + W_{n}^{\star} E_{n}^{\star} N_{n}^{\star} \right) = \sum_{n=1}^{N} \bar{L}_{n}^{\star} T^{\star P} & \forall (n) \\ \end{array}$$

4 Back

Under different cohort structure

				Average val	ue in the fu	ture 4 years				
VARIABLES	TFP growth rate				ent.Applicat er 1000 peop		Industrial.Design.Applications (per 1000 people)			
Different age intervals:	3 cohorts	4 cohorts	5 cohorts	3 cohorts	4 cohorts	5 cohorts	3 cohorts	4 cohorts	5 cohorts	
3 cohorts:	21.48***	26.22***	25.36***	-1.60***	-1.56***	-1.11***	-0.89***	-0.55***	-0.53***	
$[0,14],[15,\!64],[64,\!+)$	(3.61) 35.46***	(4.24) 34.48***	(4.08) 31.80***	(-4.60) 0.58***	(-7.06) 0.18	(-4.09) -1.72***	(-3.84) 0.63***	(-3.87) 0.71***	(-2.87) 0.08	
4 cohorts:	(5.19)	(4.28)	(4.35)	(2.73)	(0.46)	(-4.06)	(4.98)	(2.87)	(0.31)	
[0,24], [25,49], [50,74],	38.25***	43.60***	34.74***	2.29**	4.90***	3.59***	-0.42	1.08***	1.75***	
[75, +)	(3.42)	(4.41) 13.47	(3.46) 55.17***	(2.50)	(7.40) -2.59	(6.47) 4.23***	(-0.98)	(2.93) -1.85**	(5.20) -0.31	
5 cohorts: [0, 19], [20,39], [40,59], [60,79], [80,+)		(0.90)	(5.35) -21.89 (-1.08)		(-1.59)	(3.99) -7.67*** (-2.62)		(-1.99)	(-0.46) -1.09 (-0.57)	
Initial.Log	-3.46***	-3.51***	-3.51***							
$. Dependent \\ PoP. Growth$	(-4.77)	(-4.49)	(-4.55)							
Observations	732	732	732	395	395	395	215	215	215	
R-squared	0.266	0.263	0.272	0.859	0.880	0.886	0.935	0.939	0.942	
Time FE	YES	YES	YES	YES	YES	YES	YES	YES	YES	
Country FE	YES	YES	YES	YES	YES	YES	YES	YES	YES	

Under different cohort structure

	Average value in the future 4 years										
VARIABLES	Cap.	Formation(%	GDP)	Gross.C	onsumption(% GDP)	K/L growth rate				
Different age intervals:	3 cohorts	4 cohorts	5 cohorts	3 cohorts	4 cohorts	5 cohorts	3 cohorts	4 cohorts	5 cohorts		
3 cohorts:	9.34	16.69***	15.40**	98.55***	92.44***	92.98***	21.77***	24.08***	22.11***		
$[0,14],[15,\!64],[64,\!+)$	(0.98) 34.10***	(2.64) 29.11***	(2.32) 26.71**	(9.21) 64.81***	(14.84) 60.55***	(12.62) 71.18***	(3.69) 32.98***	(4.50) 39.21***	(4.02) 36.72***		
4 cohorts:	(6.74)	(4.14)	(2.52)	(9.15)	(5.58)	(5.39)	(5.32)	(5.36)	(5.30)		
[0,24], [25,49], [50,74],	-31.87	37.83**	20.39	98.58***	59.95***	43.58*	8.34	19.18	27.00***		
[75, +)	(-1.30)	(2.05) -124.60***	(1.13) 53.93**	(2.95)	(3.23) 150.74***	(1.85) 100.97**	(0.61)	(1.66) 4.22	(2.98) 21.25		
5 cohorts:		(-2.77)	(2.37)		(3.21)	(2.47)		(0.24)	(1.41)		
[0, 19], [20,39], [40,59],			-224.74***			126.47*			-9.87		
[60,79], [80,+)			(-3.07)			(1.75)			(-0.33)		
Trade Cost							-0.83**	-0.83**	-0.79**		
Initial.Log							(-2.13) -1.99***	(-2.11) -1.98***	(-2.00) -1.93***		
.Dependent PoP.Growth							(-3.45) -33.14*	(-3.21) -35.31**	(-3.14)		
Observations	724	724	724	725	725	725	(-1.84) 758	(-2.08) 758	(-1.64) 758		
R-squared	0.971	0.972	0.972	0.996	0.996	0.996	0.785	0.787	0.787		
Time FE	YES	YES	YES	YES	YES	YES	YES	YES	YES		
Country FE	YES	YES	YES	YES	YES	YES	YES	YES	YES		

Regression Coefficients follows hump shape

Figure: 3 cohorts: [0, 14], [15,64], [64,+)

Similar hump shape for 4 cohorts and 5 cohorts:

4 cohorts: [0,24], [25,49], [50,74], [75, +) • 4 cohorts
5 cohorts: [0, 19], [20,39], [40,59], [60,79], [80,+) • 5 cohorts

4 D > 4 A > 4 B > 4 B > 5 B = 900

Regression Coefficients follows hump shape

Figure: 3 cohorts: [0, 14], [15,64], [64,+)

19/19

Similar hump shape for 4 cohorts and 5 cohorts:

4 cohorts: [0,24], [25,49], [50,74], [75, +)

5 cohorts: [0, 19], [20,39], [40,59], [60,79], [80,+) • 5 cohorts

Yang Pei (UH)

DTG

Fall, 2024

Under different cohort structure

		Average value in the future 4 years											
VARIABLES	TFP growth rate Cap.Formation(%	Formation(%	GDP) Gross.Consumption			mption(% GDP)		K/L growth rate					
Different age intervals:	3 cohorts	4 cohorts	5 cohorts	3 cohorts	4 cohorts	5 cohorts	3 cohorts	4 cohorts	5 cohorts	3 cohorts	4 cohorts	5 cohorts	
3 cohorts:	21.48***	26.22***	25.36***	9.34	16.69***	15.40**	98.55***	92.44***	92.98***	21.77***	24.08***	22.11***	
[0, 14], [15,64], [64,+)	(3.61)	(4.24)	(4.08)	(0.98)	(2.64)	(2.32)	(9.21)	(14.84)	(12.62)	(3.69)	(4.50)	(4.02)	
	35.46***	34.48***	31.80***	34.10***	29.11***	26.71**	64.81***	60.55***	71.18***	32.98***	39.21***	36.72***	
4 cohorts:	(5.19)	(4.28)	(4.35)	(6.74)	(4.14)	(2.52)	(9.15)	(5.58)	(5.39)	(5.32)	(5.36)	(5.30)	
[0,24], [25,49], [50,74],	38.25***	43.60***	34.74***	-31.87	37.83**	20.39	98.58***	59.95***	43.58*	8.34	19.18	27.00***	
[75, +)	(3.42)	(4.41)	(3.46)	(-1.30)	(2.05)	(1.13)	(2.95)	(3.23)	(1.85)	(0.61)	(1.66)	(2.98)	
		13.47	55.17***		-124.60***	53.93**		150.74***	100.97**		4.22	21.25	
5 cohorts:		(0.90)	(5.35)		(-2.77)	(2.37)		(3.21)	(2.47)		(0.24)	(1.41)	
[0, 19], [20,39], [40,59],			-21.89			-224.74***			126.47*			-9.87	
[60,79], [80,+)			(-1.08)			(-3.07)			(1.75)			(-0.33)	
Trade Cost										-0.83**	-0.83**	-0.79**	
										(-2.13)	(-2.11)	(-2.00)	
Initial.Log	-3.46***	-3.51***	-3.51***							-1.99***	-1.98***	-1.93***	
.Dependent	(-4.77)	(-4.49)	(-4.55)							(-3.45)	(-3.21)	(-3.14)	
PoP.Growth										-33.14*	-35.31**	-30.58	
										(-1.84)	(-2.08)	(-1.64)	
Observations	732	732	732	724	724	724	725	725	725	758	758	758	
R-squared	0.266	0.263	0.272	0.971	0.972	0.972	0.996	0.996	0.996	0.785	0.787	0.787	
Time FE	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	
Country FE	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	

Coefficients of different cohort

Industrial Design Apps(per 1000 people)

Figure: 4 cohorts

Coefficients of different cohort

Industrial Design Apps(per 1000 people)

Figure: 5 cohorts

Coefficients of different cohort

Figure: 4 cohorts

Coefficients of different cohort

Figure: 5 cohorts

Panel VARX model

IRF of exogenous shock on I.TFP growth; II. Growth rate of real capital stock per person

Panel VARX model

IRF of exogenous shock on

I.TFP growth, II. Growth rate of Real GDP per person, III. Growth rate of real capital stock per person

Transitional Dynamics

Definition

A competitive equilibrium in the perfect foresight overlapping generations trade model with E+G-period lived agents and exogenous population dynamics, is defined as a series of capital distribution $\{b_{n,g+1,t+1}\}_{g=E+1,n}^{E+G-1}$ and rental rates $R_{t,n}$ and wage rates $W_{t,n}$ satisfies the following conditions:

- The households at different ages taking prices, transfer and deficit as given, optimize lifetime utility
- Firms taking prices as given, minimize production cost
- Each country purchases intermediate varieties from the least costly supplier/country subject to the trade cost
- All markets are clear.

▶ Equations

Transitional Dynamics (1/2)

Table: Dynamic equilibrium conditions (1/2)

```
L_{n,t} \equiv \sum_{n=1}^{E+G} \eta_{n,q,t}; \ \bar{L}_{n,t} \equiv \sum_{n=E+1}^{E+G} \eta_{n,g,t}; \ N_{n,t} = \left(1 - \tau_{n,t}^L\right) \sum_{q=E+1}^{E+G_0} \eta_{n,g,t} l_g = \left(1 - \tau_{n,t}^L\right) \sum_{g=E+1}^{E+G} \eta_{n,g,t} l_g
                                                                                                                                                                                                                                                                                                         \forall (n,t)
              P_{n,C,t}c_{n,g,t} + P_{n,I,t}b_{n,g+1,t+1} = \left(1 + \frac{R_{n,t}}{P_{n,I,t}} - \delta\right)P_{n,I,t}b_{n,g,t} + W_{n,t}\left(1 - \tau_{n,t}^L\right)E_{n,t}l_g + \frac{TRSV_{n,t}}{L} + \frac{D_{n,t}}{L}; \quad \forall g \geq E + 1
                                                                                                                                                                                                                                                                                                         \forall (n,t)
              b_{n,E+1,t} = b_{n,E+G+1,t} = 0, \ c_{n,E+g,t} > 0, \ \{c_{n,g,t+g-1}\}_{g=E+1}^{E+G}, \ \{b_{n,g+1,t+g}\}_{g=E+1}^{E+G-1} TRS_{n,t}^{V} = \frac{R_{n,t}}{P_{n-1,t}} \sum_{g=E+2}^{E+S} (\eta_{n,g-1,t-1} - \eta_{n,g,t}) \ b_{n,g,t}, \ TRS_{n,t}^{D} = (1-\delta) \sum_{g=E+2}^{E+S} (\eta_{n,g-1,t-1} - \eta_{n,g,t}) \ b_{n,g,t}
                                                                                                                                                                                                                                                                                                         \forall (n,t)
H4
                                                                                                                                                                                                                                                                                                         \forall (n,t)
              TRSV_{n,t} = P_{n,I,t} \left( TRS_{n,t}^{V} + TRS_{n,t}^{D} \right) = P_{n,I,t} \left( 1 + \frac{R_{n,t}}{P_{n,I,t}} - \delta \right) \sum_{g=E+2}^{E+S} \left( \eta_{n,g-1,t-1} - \eta_{n,g,t} \right) b_{n,g,t}
H_5
                                                                                                                                                                                                                                                                                                         \forall (n,t)
             \left(\frac{c_{n,g+1,t+g}}{c_{n,g+k-1}}\right)^{1/\sigma} = \beta \left(\frac{\psi_{n,t+g}}{\psi_{n,t+g-1}}\right) \left(1 + \frac{R_{n,t+g}}{P_{n,I,t+g}} - \delta\right) \frac{\frac{P_{n,I,t+g}}{P_{n,C,t+g}}}{\frac{P_{n,I,t+g}}{P_{n,C,t+g-1}}} \text{ for } \forall \ g \in [E+1,E+G-1] 
                                                                                                                                                                                                                                                                                                         \forall (n,t)
              C_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g,t} c_{n,g,t}; I_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g,t} i_{n,g,t}; K_{n,t} = \sum_{g=E+1}^{E+G} \eta_{n,g-1,t-1} b_{n,g,t}
                                                                                                                                                                                                                                                                                                         \forall (n,t)
             W_{n,t}E_{n,t}N_{n,t} = \sum_{i=1}^{J} \beta_n^j \gamma_n^j \sum_{i=1}^{N} \pi_{in}^j X_i^j
                                                                                                                                                                                                                                                                                                         \forall (n,t)
              R_{n,t}K_{n,t} = \sum_{i=1}^{J} (1 - \beta_n^j) \gamma_n^j \sum_{i=1}^{N} \pi_{in,t}^j X_{i,t}^j
                                                                                                                                                                                                                                                                                                         \forall (n,t)
```

Transitional Dynamics (2/2)

Table: Dynamic equilibrium conditions (2/2)

$$\begin{array}{lll} \mathbf{F3} & X_{n,t}^{j} = \alpha_{C,n}^{j} P_{C,n,t} C_{n,t} + \alpha_{I,n}^{j} P_{I,n,t} I_{n,t} + \sum_{k=1}^{J} \gamma_{n}^{j,k} \left(\sum_{i=1}^{N} X_{in,t}^{k} \right) & \forall (n,j,t) \\ \mathbf{F4} & P_{n,t}^{j} I_{j}^{j} = \alpha_{I,n}^{j} P_{I,n,t} I_{n,t}; P_{n,t}^{j} C_{j}^{j} = \alpha_{C,n}^{j} P_{C,n,t} C_{n,t} & \forall (n,j,t) \\ \mathbf{F5} & IN_{n,t} \equiv R_{n,t} K_{n,t} + W_{n,t} E_{n,t} N_{n,t} + D_{n,t} = P_{C,n,t} C_{n,t} + P_{I,n,t} I_{n,t} & \forall (n,t) \\ \mathbf{T1} & c_{n,t}^{j} \equiv \Upsilon_{n}^{j} \left[\left(W_{n,t}^{j} \right)^{\beta_{n}^{j}} \left(R_{n,t}^{j} \right)^{1-\beta_{n}^{j}} \right]^{\gamma_{n}^{j}} \prod_{k=1}^{J} P_{n,t}^{k} \gamma_{n}^{k,j} & \text{where } \Upsilon_{n}^{j} \equiv \gamma_{n}^{j} \beta_{n}^{j} \gamma_{n}^{j} \beta_{n}^{j} \gamma_{n}^{j} \left(1 - \beta_{n}^{j} \right)^{-\gamma_{n}^{j} \left(1 - \beta_{n}^{j} \right)} \prod_{k=1}^{J} \gamma_{n}^{k,j} \gamma_{n}^{k,j} & \forall (n,j,t) \\ \mathbf{T2} & P_{n,t}^{j} = A \cdot \left[\sum_{i=1}^{N} \lambda_{i,t}^{j} \left(\kappa_{n,i,t}^{j} C_{i,t}^{j} \right)^{-\theta} \right]^{-\frac{1}{\theta}} & \text{where } A \equiv \Gamma \left(\frac{1+\theta-\sigma}{\theta} \right)^{\frac{1}{(1-\sigma)}} & \forall (n,j,t) \\ \mathbf{T3} & \pi_{n,t}^{j} = \frac{\lambda_{i,t}^{j} \left(C_{i,t}^{j} K_{n,t,t}^{j} \right)^{-\theta}}{\sum_{m=1}^{N} \lambda_{n,t}^{j} \left(\kappa_{m,t}^{j} K_{m,t,t}^{j} \right)^{-\theta}} = \lambda_{i,t}^{j} \left(\frac{A^{j} c_{i,t}^{j} K_{n,t}^{j}}{P_{n,t}^{j}} \right)^{-\theta}}{\sum_{n}^{\theta} N_{n}^{\eta} N_{n}^{\eta} \left(1 - \beta_{n}^{j} \right)^{-\gamma_{n}^{j} \left(1 - \beta_{n}^{j} \right)^{-\gamma_{n}^{j} \left(1 - \beta_{n}^{j} \right)} \left(1 - \beta_{n}^{j} \right)^{\gamma_{n}^{j} \left(1 - \beta_{n}^{j} \right)} \gamma_{n}^{j} N_{n}^{\eta} N_{n}^{\eta}$$

◆ Equations