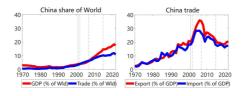
An Accounting of the Decline in China's Trade


Yang Pei University of Houston

Midwest Macroeconomics Meetings
Texas Tech University
Lubbock, TX

Nov 11, 2023

Yang Pei (UH) Nov 11, 2023 0 / 15

Motivation

Source: WDI Database

Over the past 30 years, China's economy has grown enormously

• 1990-2019, Real GDP growth rate: 9.2% per year

A key feature of its growth is participation in the global economy

• 1990-2019, China's Real Trade growth rate: 10.6% per year

→ Detail

- 《□》《圊》《토》《토》 필급 නQ♡

1/15

Motivation

Despite China's increasing importance in global trade, its trade share of GDP has been declining since 2006

- At the sector level (During 2002 to 2007 and 2007 to 2015) Detail
 - ▶ Heavy industry trade accounts for about 89% of trade share change

In parallel, China's internal economic integration also grows dramatically

• From 2002 to 2015, China's inner trade share of GDP almost doubled

- Household registration system reform: labor moves to Coastal areas
 - ▶ From 2000 to 2015, internal migrants almost doubled

4□ → 4同 → 4 三 → 4 三 → 9 Q ○

2/15

Research Question and Methodology

Research Question:

- What forces have driven China's declining trade share?
 - ▶ What is the relative importance of each?

What I do

- Develop a multi-sector, multi-region Ricardian trade model (Caliendo and Parro, 2015):
 - ▶ International trade.
 - ▶ Inter-regional trade within China.
 - ▶ Labor mobility frictions across regions within China. (Tombe and Zhu, 2018)
- Calibrate (sector-region) exogenous shocks through gravity regression:
 - ► Total factor productivity (TFP) shocks
 - ▶ Asymmetric Trade cost shocks: Intranational trade and International trade
 - Labor mobility cost shocks
- Feed each shock separately into model to assess importance of each force

Literature Review

Ricardian trade model Eaton and Kortum (2002), Caliendo and Parro (2015), Waugh (2010); Rodríguez, et. al (2020), Tombe and Zhu (2020)

- Trade and geographical distribution of labor and economic activity
 Allen and Arkolakis (2014), Caliendo, Parro, Rossi-Hansberg, and Sarte (2018), Caliendo, Dvorkin,
 and Parro (2019), Rodriguez-Clare, Ulate, and Vasquez (2020)
- Structural accounting decomposition Swiecki (2014); Sposi, et.al(2018); Choi, et.al(2018);
- Trade and Chinese economy
 Brandt and Holz (2006), Brandt, Tombe, and Zhu (2013), Brandt and Lim (2020), Fan(2020),
 Alessandria, Khan, Khederlarian, Ruhl, and Steinberg (2021), Campante, Chor, and Li (2023)

4日 → 4団 → 4 三 → 4 三 → 9 0 ○

3/15

Model

Overview

- Multi-country, multi-sector model with Eaton-Kortum Ricardian trade
 - ▶ N_0 China regions plus $N_1 = N N_0$ other regions
 - ▶ Labor move across China's regions under migration costs

Production

$$q_n^j(\omega^j) = Z_n^j(\omega^j) l_n^j(\omega^j)^{\gamma_n^j} \prod_{k=1}^J m_n^{k,j}(\omega^j)^{\gamma_n^{k,j}}$$

- Intermediate goods, $q_n^j(\omega^j)$ are produced by labor, and sectoral composite intermediate good
- Variety-specific productivity $z_{n,t}^{j}\left(\omega\right)$ drawn from Fréchet $F_{n,t}^{j}\left(z\right)=exp(-\lambda_{n,t}^{j}z^{-\theta})$
- Sector composite good used in consumption, and intermediates

Preferences

• Cobb–Douglas aggregator of sectoral composite goods from each sector

Trade

- Asymmetric iceberg costs
- Trade, determined by Ricardian comparative advantage, directly affects sectoral reallocations

$$\pi_{ni}^j = \frac{\lambda_i^j \left(\kappa_{ni}^j c_i^j\right)^{-\theta_j}}{\sum_{i=1}^N \lambda_i^j \left(\kappa_{ni}^j c_i^j\right)^{-\theta_j}} \; ; \quad c_n^j \propto w_n^{\gamma_n^j} \prod_{k=1}^J P_n^{k \gamma_n^{k,j}}$$

◆ロト ◆個ト ◆夏ト ◆夏ト 夏1章 からで

4/15

Model

Labor flow under migration costs

For each worker with registration place (a.k.a hukou) in region m moves to region n, the utility is:

$$U^{n,m} = \frac{z(\omega)}{\nu^{n,m}} U(\mathcal{C}_n)$$

- Deterministic part $I: C_n$, real consumption Detail
- Deterministic part II: $\nu^{n,m} \ge 1$, a proportional ratio captures utility loss when people choose to migrate out of registration place
- Idiosyncratic part (Preference Shiftier for Moving) : $z(\omega)$ drawn from Frechet Distribution with mean 1 and variance $(1/\kappa)$
 - ▶ The utility of people making the same migration chooses (e.g. $m \to n$) are still heterogeneous across individuals

The fraction of people migrate from m to n

$$\mathbf{m}^{n,m} = \frac{\left(\frac{W_n}{\nu^{n,m}}\right)^{\kappa}}{\sum_{nl}^{N0} \left(\frac{W_{nl}}{\nu^{nl,m}}\right)^{\kappa}}$$

 W_n : real income of representative worker migrates to region n

◄□▶ ◀團▶ ◀필▶ ◀필▶ ▲필 ♥ 오○

5/15

Model

Equilibrium

Given the model parameters $(\gamma_n^j, \gamma_n^{k,j}, \sigma^j, \alpha_n^k, \theta, \kappa)$, sectoral TFP and bilateral trade costs $(\lambda_n^j, \kappa_{ni})$, labor mobility frictions $(\nu^{n,m})$, and data on each region's trade deficit, initial total population (D_n, L_n, \bar{L}_m) , there exist unique values of labor migration share, expenditure share, and wage rate $\pi_{ni}^j, m^{n,m}, w_n$ that can solve the equations in following table.

(F1)	$c_n^j = \Upsilon_n^j w_n^{\gamma_n^j} \prod_{k=1}^J P_n^{k \gamma_n^{k,j}}; \Upsilon_n^j \equiv \prod_{k=1}^J \gamma_n^{k,j} - \gamma_n^{k,j} \gamma_n^{j-\gamma_n^j}$	$\forall (n,j)$
(F2)	$P_n^j = A^j \left(\sum_{i=1}^N \lambda_i^j \left(\kappa_{ni}^j c_i^j\right)^{-\theta}\right)^{-\frac{1}{\theta}}; A^j = \Gamma \left(\frac{1+\theta-\sigma^j}{\theta}\right)^{\frac{1}{(1-\sigma^j)}}$	$\forall (n,j)$
(F3)	$\pi_{ni}^{j} = \frac{\lambda_{i}^{j} \left(c_{i}^{j} \kappa_{ni}^{j} \right)^{-\theta}}{\sum_{m=1}^{N} \lambda_{m}^{j} \left(c_{m}^{j} \kappa_{nm}^{j} \right)^{-\theta}} = \lambda_{i}^{j} \left(A^{j} \frac{c_{i}^{j} \kappa_{ni}^{j}}{P_{n}^{j}} \right)^{-\theta}$	$\forall (n,j)$
(H1)	$P_{n=\prod_{j=1}^{J} \left(\frac{P_n^j}{n_j^j}\right)^{\alpha_n^J}$	$\forall (n)$
(H2)	$W_n \equiv \frac{I_n}{P_n L_n}; w_n L_n + D_n = I_n$	$\forall (n)$
(H3)	$m^{n,m} = \frac{\prod_{(\frac{W_n}{p^n,m})^\kappa} \left(\frac{W_n}{p^n,l}\right)^\kappa}{\sum_{n'}^{NO} \left(\frac{W_n}{p^n,l}\right)^\kappa}$	$\forall (n,m)$
(H4)	$L_n = \sum_{m}^{N0} m^{n,m} \bar{L_m}$	$\forall (n)$
(M1)	$X_n^j = \alpha_n^j I_n + \sum_{k=1}^J \gamma_n^{j,k} \left(\sum_{i=1}^N X_{in}^k \right)$	$\forall (n,j)$
(M2)	$\sum_{j=1}^{J} \sum_{i=1}^{N} X_{ni}^{j} - D_{n} = \sum_{j=1}^{J} \sum_{i=1}^{N} X_{in}^{j}$	$\forall (n,j)$
(M2')	$w_n L_n = \sum_{j=1}^J \gamma_n^j \sum_{i=1}^N \pi_{in}^j X_i^j$	$\forall (n)$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ト 恵 目 ** 夕 ○ ○

5/15

Mechanism

Analytical Solution

Under one-sector version of the model and friction-less trade

TradeShareofGDP_{CHN} =
$$\frac{1}{\beta} \left(1 - \sum_{i \in \mathbb{N}_0} \pi_{ni} \right) = \frac{1}{\beta} \left(\sum_{i \in \mathbb{N}_1} \pi_{ni} \right)$$
 (1)

$$\pi_{ni} = (Z_i)^{\frac{1}{1+\beta\theta}} \left[\sum_{i=1}^{N} (Z_i)^{\frac{1}{1+\beta\theta}} \right]^{-1}$$
 (2)

- N_0 regions within China; $N_1 = N N_0$ foreign regions
- $\mathbf{Z_n} \equiv \lambda_{\mathbf{n}} \mathbf{L_n}^{\theta\beta}$ is defied as **Productive Capacity** of the region n

Under friction-less migration

$$L_n = \frac{(\lambda_n)^{\frac{\kappa}{1+\kappa+\beta\theta}}}{\sum_{n'}^{N_0} (\lambda_{n'})^{\frac{\kappa}{1+\kappa+\beta\theta}}} \sum_{m}^{N_0} \bar{L}_m$$
(3)

Higher TFP regions with higher labor supply

 Yang Pei (UH)
 Nov 11, 2023
 6 / 15

Mechanism

Intuition

Intuition: Comparative Advantage (CA) and specialization

- TFP
 - ▶ As China's TFP increases, all else equal, because of **CA** forces, China produce more varieties, its share of total spending on domestic goods will increase; hence, the import share will decline.
- Trade cost
 - ▶ International trade cost increase: China specialize more varieties, trade share decrease
 - ▶ Intranational trade cost decrease: Foreign specialize relatively less varieties, trade share decrease
- Labor supply and Labor mobility cost
 - ▶ Labor supply decrease: Small country do not need to specialize in too many goods to be able to consume the goods it needs. The country will specialize on less varieties (right tail of the distribution), thus trade share increase.
 - ▶ Labor mobility cost decrease: ambiguous aggregate effects
 - ★ high TFP region: labor net inflow, specialize more varieties, trade share decrease
 - ★ low TFP region: labor net outflow, specialize less varieties, trade share increase

Yang Pei (UH) Nov 11, 2023 7 / 15

Date Sources

- 8 China regions plus 3 foreign regions; 2 periods
 - ▶ 8 regions within China mainland: NorthEast; BeijingTianjin; NorthernCoastal; EasternCoastal; SouthernCoastal; Central; NorthWest; SouthWest
 - ▶ 3 foreign regions: "Asian3": Korean, Taiwan and Japan aggregate together; "G6": G7 country group without Japan; "ROW": aggregate of rest of the world
 - **2** periods: 2002 to 2007, 2007 to 2015
- Four broad sectors (ISIC v4)
 - ▶ Agriculture: Agriculture, forestry and fishing (A)
 - ▶ **Light industry**: Manufacturing (C10-18);
 - ▶ Heavy industry: Mining and quarrying (B); Manufacturing (C19-33); Electricity, gas, steam and air conditioning supply (D); Water supply, sewerage, waste management and remediation activities (E)
 - ▶ Services: the remaining sectors from F to S
- Data sources
 Detail
 - China IRIO table; WIOD table; OECD ICIO table; CEPII; Penn World Tables 10.0; The China's National Census Data

Yang Pei (UH) Nov 11, 2023 8/15

Parameters and Shocks

Table: Calibration

	Time Invariant Parameters								
$\theta = 4$	Trade elasticity	Simonovska and Waugh (2014)							
$\kappa = 1.5$	Labor flow elasticity	Tombe and Zhu (2020)							
$\sigma = 2$	Intermediate varieties elasticity	Broda and Weinstein (2006)							
α_n^j	Expenditure share	Calculated from IO table and							
$\gamma_n^j, \gamma_n^{j,k}$	Production share	take average across year							
	Time Varying Sho	ocks							
λ_n^j	TFP	Following Tombe and Zhu							
κ_{ni}^{j}	Trade cost	(2020), calibrated by gravity							
$ u_n^j$	Labor flow cost	regression							
\bar{L}^m	Labor supply	Get directly from PWT and census							

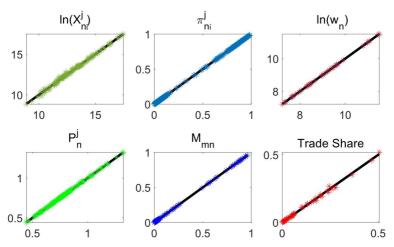
Yang Pei (UH)

Results

TFP Detail

- 2002-2007: China aggregate TFP increased 24% (weighted by average value-added share)
 - ► Heavy industry increased 14%
- 2007-2015: China aggregate TFP increased 57%
 - ► Heavy industry increased 39%

Trade cost Detail


- 2002-2007: For China,
 - ► Intranational trade cost decreased 17% (weighted by average trade share)
 - ▶ International trade cost:
 - ★ Export cost decreased 27%
- 2007-2015: For China.
 - ▶ Intranational trade cost decreased 4%
 - ▶ International trade cost:
 - ★ Export cost decreased 23%

Migration cost Detail

- 2002-2007: Migration cost decreased 25% (weighted by average labor flow share)
- 2007-2015: Migration cost decreased 4%

Yang Pei (UH) Nov 11, 2023 10 / 15

Calibration Efficiency

Note: The scatter plots have actual data on the x axis and model-generated value on the y axis with the 45 degree line on the diagonal.

Figure: Calibration Efficiency

Yang Pei (UH) Nov 11, 2023 11/15

Baseline Model and Data

Table: Model fit

China Trade			Model				
Share of GDP		Data	Balanced trade	Exogenous trade deficits			
		Dava	Baseline 1	Baseline 2			
Import (%	2002	19.68%	$\boldsymbol{22.09\%}$	19.43%			
of GDP)	2007	25.78%	29.86%	24.58 %			
	2015	17.41%	19.59%	18.08%			
Export (%	2002	23.46%	-	23.19%			
GDP)	2007	36.39%	-	35.25%			
	2015	20.03%	-	$\boldsymbol{20.69\%}$			
Internal	2002	26.95%	23.96%	26.05%			
trade (%	2007	46.64%	45.79%	45.88%			
of GDP)	2015	50.53%	50.96%	51.79%			

- The model reproduces trade share of GDP relatively well
- In the main text, I use Baseline 1 as baseline and do counterfactual under balanced trade
- In the robustness checks, I use *Baseline 2* as baseline a do counterfactual with exogenous trade deficit to GDP ratio

Counterfactual

Results: Single shocks

Table: Decompose Marginal effects

Decompose Marginal effects									
	Trade	Share of G	DP (p.p. c	hange)					
	2002-	2007	2007-	2015					
	External	Internal	External	Internal					
All Forces (Baseline)	7.78	21.83	-10.28	5.16					
TFP	-12.55	2.04	-10.75	-0.12					
Demographic									
Migration firction	1.99	1.01	-1.84	0.14					
Population growth	-0.36	0.08	-0.47	-0.07					
$Trade\ cost$									
Intranational	-2.31	21.36	-0.24	-0.41					
International	9.86	-1.65	-4.47	-1.42					
$Other\ forces$	6.08	-1.42	0.37	2.25					

Baseline: all shocks realized as actual

Counterfactual: hold specific shock at the base year level while all other shocks realized as actual

Marginal effects of specific shock = Trade share under Baseline - Trade share under Counterfactual

Yang Pei (UH) Nov 11, 2023 13/15

Counterfactual

Results: Single shocks at disaggregated level

Table: Decompose Marginal effects at disaggregated level

Decompose Marginal effects at the sector level Trade Share of GDP (p.p. change)									
	2002-	2007	2007-2015						
	External	Internal	External	Internal					
All Forces	7.78	21.83	-10.28	5.16					
Other forces	6.08	-1.42	0.37	2.25					
Foregin TFP	5.80	-1.47	0.67	2.11					
Foregin trade cost	-0.41	0.17	-0.68	0.25					
Foregin labor	0.76	-0.14	0.56	-0.07					
TFP	-12.55	2.04	-10.75	-0.12					
Agriculture	-0.37	0.05	-4.70	-0.78					
Light industry	-1.50	0.47	-0.90	0.03					
Heavy industry	-8.42	5.41	-8.63	5.24					
Service	-8.70	-4.12	-13.96	-4.31					
International Trade cost	9.86	-1.65	-4.47	-1.42					
Agriculture	-0.24	0.00	-1.83	-0.26					
Light industry	0.63	-0.14	-0.39	0.08					
Heavy industry	6.74	-0.23	-0.92	1.00					
Service	0.56	-0.78	-4.85	-1.84					
Intranational Trade cost	-2.31	21.36	-0.24	-0.41					
Agriculture	0.01	0.88	0.01	-0.17					
Light industry	-0.12	2.69	0.04	-1.21					
Heavy industry	-1.98	10.67	0.27	-3.56					
Service	0.04	5.72	-0.06	2.36					

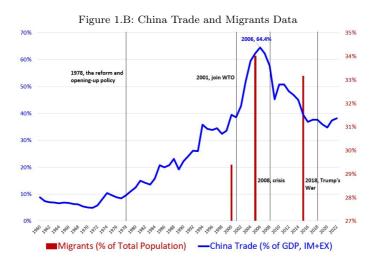
Yang Pei (UH) Nov 11, 2023 14/15

Conclusions

Build trade model to explain China's trade share change over time

• Key driving forces are China's TFP change and China's export trade cost change

Story for China's trade share of GDP Change


- Overall
 - ▶ From 2002 to 2007, China's trade share of GDP increase due to
 - ★ International trade cost decline, foreign regions TFP growth
 - ★ While China's regions TFP growth driven trade share down
 - ▶ From 2007 to 2015, China's trade share of GDP decline due to
 - ★ China's TFP growth
- At sector level
 - ▶ From 2002 to 2007, the international trade costs decline in the heavy industry is also important
 - ► In both periods, changes in TFP within the heavy industry sector play a crucial role ► Detail
 - ★ Through input-output linkages, changes in TFP within the services sector hold the same level of importance

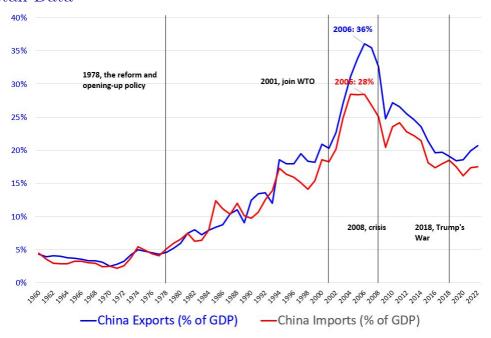
Yang Pei (UH) Nov 11, 2023 15/15

Thank You

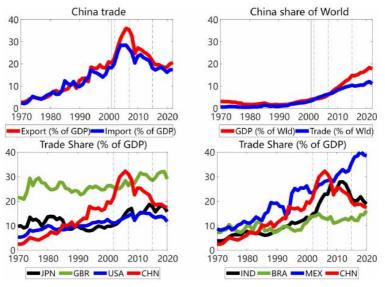
Yang Pei (UH) Nov 11, 2023 15 / 15

China Trade and Migrants Data

Migrants: people living outside of their registration (hukou) province.


Source: WDI Database and China Statistical Yearly book Back

◆□▶ ◆□▶ ◆■▶ ◆■▶ ●□■ からの


15 / 15

Nov 11, 2023

Detail Data

Detail Data

Note: The solid line represents the year 2001 when China joined the WTO. The three dotted vertical lines represent the years 2002, 2007, and 2015, respectively. These are the years for which I conducted the counterfactual analysis.

China trade share at sector level and migrants share

Table: China trade share at sector level and migrants share

	2002	2007	2015		2002	2007	2015
Import (% of GDP)	19.68%	25.78%	17.41%	Export (% of GDP)	23.46%	36.39%	20.03%
Agricultural Component	0.48%	0.80%	0.61%	Agricultural Component	0.37%	0.31%	0.14%
Light Industry Component	2.03%	1.36%	1.07%	Light Industry Component	5.21%	6.61%	3.17%
Heavy Industry Component	15.16%	20.77%	10.08%	Heavy Industry Component	12.98%	24.22 %	13.13%
Services Component	2.01%	2.86%	5.65%	Services Component	4.91%	5.51%	3.59%
	2002	2007	2015		2002	2007	2015
Inner Trade (% of GDP)	26.95%	46.64%	50.53%	China Trade (% of World)	4.59%	6.72%	10.05%
Agricultural Component	1.37%	2.31%	2.23%	China GDP (% of World)	6.49%	9.24%	14.71%
Light Industry Component	4.51%	5.86%	6.11%				
Heavy Industry Component	16.33%	$\boldsymbol{27.85\%}$	24.41%		2000	2005	2015
Services Component	4.74%	10.61%	17.79%	China Migrants (% of pop.)	29.40 %	$\boldsymbol{34.00\%}$	33.20 %

- Heavy industry trade share change accounts for main change of China's Trade share change
- Migrants share changes more during period 2000-2005 than period 2005-2015

◆ Back

◆ロト 4周ト 4 三ト 4 三ト 三 三 り Q ○

China trade share at regional level

Table: China trade share at regional level

Trade (% of GDP)	2002	2007	2015		2002	2007	2015		
Aggregate	21.57%	31.09%	18.72%	-	-	-	-		
	C	omponen	t classifi	ed by China regions					
NorthEast (NE)	1.16%	1.96%	0.72%	Southern Coastal (SC)	8.31%	7.55%	6.13%		
BeijingTianjin (BT)	1.72%	2.78%	1.58%	Central (CE)	0.80%	2.24%	1.02%		
NorthernCoastal (NC)	1.58%	2.81%	1.83%	North West (NW)	0.39%	1.60%	0.51%		
EasternCoastal (EC)	7.08%	10.83%	$\boldsymbol{6.14\%}$	SouthWest(SW)	0.53%	1.31%	0.78%		
Component classified by foreign regions									
USA	2.86%	3.97%	3.22%	AUS	0.42%	0.73%	0.72%		
JPN	2.83%	2.99%	1.52%	GBR	0.45%	0.61%	0.38%		
KOR	1.33%	1.92%	1.38%	FRA	0.42%	0.66%	0.43%		
TWN	1.22%	1.54%	0.76%	IND	0.21%	0.54%	0.55%		
DEU	0.96%	1.68%	0.82%	ITA	0.30%	0.47%	0.26%		
NLD	0.20%	0.32%	0.15%	CAN	0.33%	0.55%	0.42%		
RUS	0.31%	0.64%	0.37%	ROW1	9.74%	14.47%	7.73%		
G6	5.32%	7.93%	5.54%						
AS3	5.37%	$\boldsymbol{6.45\%}$	3.66%	ROW2	10.88%	16.70%	9.52%		

- Eastern coastal and Southern coastal trade change accounts for main change of China's trade share change
- As main trade partner of China, G6 is as important as Asian3

Yang Pei (UH) Nov 11, 2023 15 / 15

IO linkages

Input-Output	Source sector									
linkages	Agricultural	Light	Heavy	Services	Agricultural	Light	Heavy	Services		
Destination sector	Average	e cross (China reg	rions		-				
Agricultural	0.16	0.09	0.11	0.07	-	-	-	-		
Light	0.20	0.30	0.10	0.11	-	-	-	-		
Heavy	0.01	0.03	0.51	0.12	-	-	-	-		
Services	0.02	0.05	0.22	0.21	-	-	-	-		
Destination sector		North	East		1	BeijingT	ianjin			
Agricultural	0.18	0.28	0.01	0.01	0.21	0.13	0.00	0.01		
Light	0.14	0.26	0.01	0.05	0.10	0.36	0.01	0.04		
Heavy	0.12	0.11	0.56	0.25	0.18	0.14	0.62	0.22		
Services	0.06	0.09	0.12	0.21	0.10	0.12	0.14	0.29		
	Λ	orthern	Coastal		Ì	Eastern (Coastal			
Agricultural	0.18	0.23	0.01	0.01	0.14	0.12	0.01	0.01		
Light	0.11	0.35	0.04	0.05	0.13	0.39	0.03	0.04		
Heavy	0.14	0.11	0.59	0.24	0.13	0.16	0.63	0.24		
Services	0.04	0.08	0.11	0.20	0.07	0.10	0.11	0.25		
	S	outhern	Coastal		Central					
Agricultural	0.15	0.13	0.01	0.01	0.20	0.26	0.01	0.01		
Light	0.12	0.38	0.03	0.05	0.10	0.31	0.03	0.05		
Heavy	0.10	0.14	0.62	0.19	0.10	0.09	0.53	0.23		
Services	0.07	0.10	0.13	0.24	0.05	0.09	0.14	0.22		
		North	West			South	Vest			
Agricultural	0.19	0.31	0.01	0.01	0.20	0.25	0.01	0.01		
Light	0.08	0.22	0.01	0.04	0.09	0.20	0.02	0.05		
Heavy	0.12	0.08	0.49	0.25	0.09	0.11	0.54	0.26		
Services	0.07	0.09	0.13	0.21	0.04	0.10	0.15	0.22		

Time Varying Driving Forces

The structural gravity equation from the model:

$$\ln\left(\frac{X_{nit}^{j}}{X_{nnt}^{j}}\right) = \ln\left(\lambda_{it}^{j} \left(c_{it}^{j}\right)^{-\theta}\right) - \ln\left(\lambda_{nt}^{j} \left(c_{nt}^{j}\right)^{-\theta}\right) - \theta \ln\left(\kappa_{nit}^{j}\right)$$
(4)

I assume that unobserved trade cost terms κ_{ni}^J can be described by a symmetric component and an exporter-specific component, and the symmetric component is well proxied by population-weighted geographic distance:

$$\ln\left(\kappa_{ni}^{j}\right) = \mathrm{EX}_{i}^{j} + \beta^{j} \ln \mathrm{Dist}_{ni} + \epsilon_{ni}^{j} \tag{5}$$

Combine 5 and 4, I get the following structural equation:

$$\ln\left(\frac{X_{ni}^{j}}{X_{nn}^{j}}\right) = \left\{\ln\left(\lambda_{i}^{j}\left(c_{i}^{j}\right)^{-\theta}\right) - \theta \mathbf{E} \mathbf{X}_{i}^{j}\right\} + \left\{-\ln\left(\lambda_{n}^{j}\left(c_{n}^{j}\right)^{-\theta}\right)\right\} - \theta \beta^{j} \ln \mathrm{Dist}_{ni} - \theta \epsilon_{ni}^{j}$$

$$= E_{i}^{j} + M_{n}^{j} + \Theta^{j} \ln \mathrm{Dist}_{ni} + \nu_{ni}^{j}$$
(6)

where
$$E_{i}^{j} \equiv S_{i}^{j} - \theta \ \text{EX}_{i}^{j}, M_{n}^{j} \equiv -S_{n}^{j}, \Theta^{j} \equiv -\theta \beta^{j}$$
, and $S_{n}^{j} \equiv \ln \left(\lambda_{n}^{j} \left(c_{n}^{j} \right)^{-\theta} \right)$

I run the regression 6 separately for each year and sector, then get estimated fixed effects \tilde{E}_i^j and \tilde{M}_n^j .

→ Regression Result:

Yang Pei (UH) Nov 11, 2023 15/15

Time Varying Driving Forces Back

Trade Cost

$$\tilde{\kappa}_{ni}^{j} = \left\{ \left(\frac{X_{ni}^{j}}{X_{nn}^{j}} \right) exp(\tilde{S}_{n}^{j} - \tilde{S}_{i}^{j}) \right\}^{-\frac{1}{\theta}}$$
 (7)

 \mathbf{TFP}

$$\tilde{c}_n^j = \Upsilon_n^j \tilde{w}_n^{\gamma_n^j} \prod_{k=1}^J \tilde{P}_n^{k\gamma_n^{k,j}} \quad and \quad \Upsilon_n^j \equiv \prod_{k=1}^J \gamma_n^{k,j} \gamma_n^{k,j} \gamma_n^{j} \gamma_n^{j}$$
(8)

$$\tilde{P}_n^j = A^j \left[\left(\frac{exp(\tilde{S}_n^j)}{\pi_{nn}^j} \right) \right]^{-\frac{1}{\theta}} \tag{9}$$

$$\tilde{\lambda}_n^j = \frac{exp\left(\tilde{S}_n^j\right)}{\left(\tilde{c}_n^j\right)^{-\theta}} \tag{10}$$

Migration cost

$$\tilde{\nu}^{n,m} = \left(\frac{\tilde{m}^{n,m}}{\tilde{m}^{m,m}}\right)^{-1/\kappa} \left(\frac{\tilde{W}_n}{\tilde{W}_m}\right) \quad where \quad \tilde{W}_n = \frac{\tilde{w}_n L_n + D_n}{\tilde{P}_n L_n}$$
(11)

Yang Pei (UH) Nov 11, 2023 15 / 15

Regression Results (Back)

Table: Gravity Equation Results

Sector	Agriculture			L	ight indust	ry	H	eavy indus	try		Service	
Year	2002	2007	2015	2002	2007	2015	2002	2007	2015	2002	2007	2015
VARIABLES						ln(Xn	i/Xnn)					
logdist	-2.18***	-1.80***	-1.30***	-1.82***	-1.65***	-0.94***	-1.77***	-1.44***	-1.11***	-2.09***	-1.81***	-1.05***
	(-6.96)	(-6.18)	(-4.78)	(-7.82)	(-8.66)	(-3.86)	(-8.10)	(-8.66)	(-5.33)	(-7.84)	(-7.65)	(-3.73)
M_2	0.54	2.19***	2.63***	0.84**	0.98***	0.66	0.75**	0.25	0.24	0.63	0.65	0.02
	(1.01)	(4.43)	(5.73)	(2.13)	(3.05)	(1.59)	(2.02)	(0.90)	(0.67)	(1.39)	(1.61)	(0.04)
M_3	-1.26**	1.41***	0.32	-1.00**	-1.27***	-1.71***	-0.42	-0.83***	-1.54***	0.15	-0.04	-0.65
	(-2.35)	(2.84)	(0.70)	(-2.49)	(-3.92)	(-4.11)	(-1.12)	(-2.92)	(-4.33)	(0.33)	(-0.09)	(-1.35)
M_4	-0.15	1.86***	1.13**	-1.24***	-0.75**	-0.62	-0.36	-0.31	-0.02	-0.30	-0.78*	-0.15
_	(-0.29)	(3.81)	(2.50)	(-3.16)	(-2.36)	(-1.53)	(-0.98)	(-1.10)	(-0.07)	(-0.67)	(-1.96)	(-0.31)
M 5	-0.31	1.46***	1.80***	0.14	0.22	-0.28	0.96***	0.70**	0.07	1.06**	0.23	0.35
_	(-0.60)	(3.03)	(4.04)	(0.37)	(0.72)	(-0.70)	(2.67)	(2.55)	(0.20)	(2.40)	(0.58)	(0.75)
M_6	-1.37**	0.55	-0.28	-1.31***	-1.12***	-1.34***	-0.66*	-0.35	-0.68*	-0.67	0.22	-0.56
_	(-2.60)	(1.13)	(-0.61)	(-3.32)	(-3.50)	(-3.27)	(-1.80)	(-1.23)	(-1.95)	(-1.49)	(0.56)	(-1.16)
M 7	0.04	1.42***	-0.12	0.72*	0.78**	-0.17	0.70*	0.40	-0.13	0.72	1.16***	-0.06
	(0.09)	(2.94)	(-0.28)	(1.87)	(2.48)	(-0.43)	(1.93)	(1.46)	(-0.39)	(1.62)	(2.94)	(-0.14)
M 8	-1.64***	0.35	-0.14	-0.83**	-0.07	-0.38	0.02	0.13	-0.07	1.05**	0.75*	-0.16
	(-3.18)	(0.72)	(-0.31)	(-2.15)	(-0.24)	(-0.94)	(0.06)	(0.46)	(-0.20)	(2.38)	(1.93)	(-0.35)
M 9	1.41*	2.05***	0.51	0.81	0.70	-0.51	1.04**	0.35	0.09	0.06	-0.61	-1.84***
	(1.91)	(3.01)	(0.81)	(1.48)	(1.58)	(-0.89)	(2.02)	(0.89)	(0.18)	(0.10)	(-1.10)	(-2.77)
M_{10}	0.13	1.27**	-0.48	-0.89**	-1.11***	-1.50***	-1.26***	-1.50***	-1.31***	-2.20***	-2.41***	-2.32***
	(0.25)	(2.62)	(-1.05)	(-2.29)	(-3.50)	(-3.70)	(-3.46)	(-5.39)	(-3.79)	(-4.96)	(-6.09)	(-4.91)
M_{11}	1.04	1.76***	-0.66	0.75	0.29	-1.02*	0.89*	0.13	-0.02	1.97***	0.98*	-1.34**
_	(1.58)	(2.87)	(-1.15)	(1.52)	(0.71)	(-1.98)	(1.93)	(0.37)	(-0.04)	(3.50)	(1.95)	(-2.24)
Exporter FE	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
Observations	110	110	110	110	110	110	110	110	110	110	110	110
R-squared	0.975	0.977	0.975	0.976	0.979	0.966	0.976	0.980	0.970	0.982	0.981	0.967

t-statistics in parentheses *** p<0.01, ** p<0.05, * p<0.1.

15 / 15

Utility function

Each worker is endowed with 1 unit of labor. For each worker registered in region m, if this worker choosing working in region n, the Cobb-Douglas utility is:

$$U(\mathcal{C}_n) \equiv \mathcal{C}_n \equiv \prod_{k=1}^J \mathcal{C}_n^{k \alpha_n^k}, \sum_{k=1}^J \alpha_n^k = 1$$
 (12)

$$\sum_{k} P_n^k \mathcal{C}_n^k = P_n \mathcal{C}_n = \mathcal{I}_n \tag{13}$$

$$\mathcal{I}_n L_n = I_n \tag{14}$$

For each individual people choosing to work in region n

- his consumption on sector k composite intermediate good is \mathcal{C}_n^k
- his aggregate consumption or utility is defined as C_n
- his wage rate is w_n
- Real income for each individual worker in region n is defined as $W_n \equiv \frac{w_n L_n + D_n}{P_n L_n}$

√ Back

4□▶ 4團▶ 4필▶ 4필▶ 필급 외익()

15 / 15

 $Results: \ TFP \ change$

◀ Return

Table: TFP change across sectors and regions

Average TFP		2 002 to	2007		2007 to 2015				
Change	China	A7-JPN	AS3	ROW	China	A7-JPN	AS3	ROW	
Aggregate	1.24	1.18	1.00	1.46	1.57	1.24	1.00	1.42	
Agricultural	1.36	1.15	1.00	1.52	1.34	0.87	1.00	1.13	
$Light\ Industry$	1.14	0.97	1.00	1.16	1.28	1.10	1.00	1.03	
$Heavy\ Industry$	1.14	1.15	1.00	1.29	1.39	1.02	1.00	0.98	
Services	1.30	1.20	1.00	1.53	1.78	1.29	1.00	1.63	

- TFP change of Asian3 normalized to 1.
- I aggregate the regional sectoral TFP using average value-added shares (average across year 2002, 2007, and 2015) as weights

Yang Pei (UH) Nov 11, 2023 15 / 15

Results: Labor migration Cost change

Table: Labor migration cost change

	Labor	migr	ation	cost c	hange				
2002 to 2007				.5	Source				
Destination	Ave.	NE	BT	NC	EC	SC	CE	NW	SW
Aggregate (Ave)	0.75	0.54	2.09	0.89	1.02	0.66	0.63	0.98	0.75
$NorthEast\ (NE)$	1.21	1.00	1.81	1.01	1.52	0.77	0.72	1.04	0.83
Beijing Tianjin (BT)	0.26	0.24	1.00	0.31	0.44	0.28	0.22	0.35	0.20
NorthernCoastal (NC)	0.77	0.85	1.92	1.00	1.34	0.91	0.76	1.20	0.72
EasternCoastal (EC)	0.63	0.52	1.36	0.53	1.00	0.55	0.46	0.73	0.38
SouthernCoastal (SC)	1.17	0.96	2.53	1.00	1.58	1.00	0.82	1.27	0.80
Central (CE)	1.21	1.25	3.00	1.53	1.76	1.16	1.00	2.11	1.07
NorthWest(NW)	0.77	1.06	1.90	0.85	1.17	0.59	0.57	1.00	0.63
South West (SW)	1.04	1.47	2.65	1.35	1.83	1.32	1.00	2.05	1.00
2007 to 2015					Source				
Destination	Ave.	NE	BT	NC	EC	SC	CE	NW	SW
Aggregate (Ave)	0.96	0.66	0.23	1.05	1.41	0.57	1.49	0.64	1.26
NorthEast (NE)	1.36	1.00	0.31	2.21	1.57	0.94	2.21	1.17	1.35
Beijing Tianjin (BT)	2.21	1.15	1.00	2.21	2.21	1.29	2.72	1.24	2.32
NorthernCoastal (NC)	0.91	0.64	0.30	1.00	0.82	0.39	1.04	0.58	1.06
EasternCoastal (EC)	0.63	0.46	0.26	0.89	1.00	0.56	1.31	0.44	1.14
SouthernCoastal (SC)	1.56	0.80	0.49	1.96	1.59	1.00	2.50	1.19	1.87
Central (CE)	0.46	0.30	0.11	0.64	0.43	0.26	1.00	0.43	0.71
North West (NW)	1.51	0.72	0.30	1.44	1.45	0.69	2.09	1.00	2.14
South West (SW)	0.62	0.34	0.29	0.71	0.63	0.37	1.19	0.45	1.00

- 2002-2007: average migration cost change is 0.75 (weighted by average labor flow across 3 years)
- 2007-2015: average migration cost change is 0.96

◆ロト ◆問ト ◆ヨト ◆ヨト ヨ|= めな○

Yang Pei (UH) Nov 11, 2023 15 / 15

Results: Trade Cost change

Heavy Industry

Services

∢ Return

Table: Average Trade Cost Change across sectors and regions

Average Trade	China ar	nd China	Foreign as	n and Foreign		
$Cost\ Change$	2002 to 2007	2007 to 2015	2002 to 2007	2007 to 2015		
Aggregate	0.83	0.96	0.96	0.93		
Agricultural	0.84	0.92	0.98	1.10		
$Light\ Industry$	0.85	1.01	1.03	1.05		
Heavy Industry	0.82	1.04	0.98	1.00		
Services	0.83	0.83	0.93	0.83		
	China to F	oreign (Ex)	Foreign to	China (Im)		
	2002 to 2007	2007 to 2015	2002 to 2007	2007 to 2015		
Aggregate	0.73	0.77	1.00	1.16		
Agricultural	0.74	0.64	1.04	1.56		
$Light\ Industry$	0.74	0.74	1.14	1.34		

0.89

0.58

0.98

0.99

1.12

1.18

• 2002-2007: For China, both Intranational trade cost and international trade cost decrease

• 2007-2015: Trade cost not change to much except the international trade cost.

0.70

0.77

Yang Pei (UH) Nov 11, 2023 15/15

Trade cost, Price and Equilibrium Condition

- Trade cost follow the usual "iceberg" form: For country n, to receive 1 unit good from country i sector j, country i need transport $\kappa_{ni}^j \geq 1$ units good.
- c_n^j : The cost of a bundle of labor and sectoral composite intermediate good of country n sector j.
- $p_n^j(\omega^j)$: the price of intermediate good in country n.
- P_n^j : the price of sector composite intermediate good in country n.
- X_{ni}^{j} : The expenditure in country n of sector j goods from country i.
- X_n^j : The expenditure in country n of sector j goods.
- Trade cost follow the usual "iceberg" form: For country n, to receive 1 unit good from country i sector j, country i need transport $\kappa_{ni}^j \geq 1$ units good.

$$c_{n}^{j} = \Upsilon_{n}^{j} w_{n}^{\gamma_{n}^{j}} \prod_{k=1}^{J} P_{n}^{k}^{\gamma_{n}^{j,k}}, \ p_{n}^{j}(\omega^{j}) = \min_{i} \frac{c_{i}^{j} \kappa_{ni}^{j}}{z_{n}^{j}(\omega^{j})}, \ P_{n}^{j} \underset{a.e}{\rightarrow} A_{j} \Phi_{n}^{j}^{-\frac{1}{\theta_{j}}}, \Phi_{n}^{j} = \sum_{i=1}^{N} \lambda_{i}^{j} \left(\kappa_{ni}^{j} c_{i}^{j}\right)^{-\theta_{j}}, \\ \pi_{ni}^{j} = \frac{X_{ni}^{j}}{\sum_{m=1}^{N} X_{nm}^{j}} = \frac{X_{ni}^{j}}{X_{n}^{j}}$$

◆ Back

- ◀ □ ▶ ◀ @ ▶ ◀ 분 ▶ · 된 글 글 이익()

15 / 15

Mechanism

Analytical Solution

Pack Under friction-less migration:

$$L_n = \frac{(\lambda_n)^{\frac{\kappa}{1+\kappa+\beta\theta}}}{\sum_{n'}^{N_0} (\lambda_{n'})^{\frac{\kappa}{1+\kappa+\beta\theta}}} \sum_{m}^{N_0} \bar{L}_m$$
 (15)

• Higher TFP regions with higher labor supply

◆ロト ◆御 ト ◆注 ト ◆注 ト 注 目 ** り へ ○*

15 / 15